Some exponential inequalities for acceptable random variables and complete convergence

被引:4
作者
Shen, Aiting [2 ]
Hu, Shuhe [2 ]
Volodin, Andrei [1 ]
Wang, Xuejun [2 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[2] Anhui Univ, Sch Math Sci, Hefei 230039, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2011年
基金
中国国家自然科学基金;
关键词
acceptable random variables; exponential inequality; complete convergence; DEPENDENCE;
D O I
10.1186/1029-242X-2011-142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some exponential inequalities for a sequence of acceptable random variables are obtained, such as Bernstein-type inequality, Hoeffding-type inequality. The Bernstein-type inequality for acceptable random variables generalizes and improves the corresponding results presented by Yang for NA random variables and Wang et al. for NOD random variables. Using the exponential inequalities, we further study the complete convergence for acceptable random variables.
引用
收藏
页数:10
相关论文
共 12 条
  • [1] ALAM K, 1981, COMMUN STAT A-THEOR, V10, P1183
  • [2] ON A THEOREM OF HSU AND ROBBINS
    ERDOS, P
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (02): : 286 - 291
  • [3] Feller W., 1971, INTRO PROBABILITY TH, P211
  • [4] Giuliano A. R., 2008, J MATH ANAL APPL, V338, P1188, DOI DOI 10.1016/J.JMAA.2007.05.073
  • [5] COMPLETE CONVERGENCE AND THE LAW OF LARGE NUMBERS
    HSU, PL
    ROBBINS, H
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1947, 33 (02) : 25 - 31
  • [6] NEGATIVE ASSOCIATION OF RANDOM-VARIABLES, WITH APPLICATIONS
    JOAGDEV, K
    PROSCHAN, F
    [J]. ANNALS OF STATISTICS, 1983, 11 (01) : 286 - 295
  • [7] SOME CONCEPTS OF DEPENDENCE
    LEHMANN, EL
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (05): : 1137 - &
  • [8] Romano J.P., 1986, WADSWORTH BROOKS COL
  • [9] A note on the exponential inequality for a class of dependent random variables
    Sung, Soo Hak
    Srisuradetchai, Patchanok
    Volodin, Andrei
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2011, 40 (01) : 109 - 114
  • [10] Exponential inequalities and inverse moment for NOD sequence
    Wang Xuejun
    Hu Shuhe
    Yang Wenzhi
    Ling Nengxiang
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (5-6) : 452 - 461