MULTIPLE POSITIVE SOLUTIONS FOR A NONLOCAL PDE WITH CRITICAL SOBOLEV-HARDY AND SINGULAR NONLINEARITIES VIA PERTURBATION METHOD

被引:7
作者
Daoues, Adel [1 ]
Hammami, Amani [1 ]
Saoudi, Kamel [2 ,3 ]
机构
[1] Univ Sousse, Ecole Super Sci & Technol Hammam Sousse, Sousse, Tunisia
[2] Imam Abdulrahman Bin Faisal Univ, Coll Sci Dammam, Dammam 31441, Saudi Arabia
[3] Imam Abdulrahman Bin Faisal Univ, Basic & Appl Sci Res Ctr, POB 1982, Dammam 31441, Saudi Arabia
关键词
nonlocal operator; singular nonlinearity; HardySobolev exponent; variational and approximation methods; multiple positive solutions;
D O I
10.1515/fca-2020-0042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the following nonlocal problem with singular term and critical Hardy-Sobolev exponent (P) {(-Delta)(s)u =lambda/u(gamma) + vertical bar u vertical bar(2*alpha-2u) / vertical bar x vertical bar(alpha) in Omega, u > 0 in Omega, u = 0 in R-N \ Omega, where Omega subset of R-N is an open bounded domain with Lipschitz boundary, 0 < s < 1, lambda > 0 is a parameter, 0 < alpha < 2s < N, 0 < gamma < 1 < 2 < 2*(s), where 2*(s) = 2N/N-2s and 2*(alpha) = 2(N-alpha)/N-2s are the fractional critical Sobolev and Hardy Sobolev exponents respectively. The fractional Laplacian (-Delta)(s) with s epsilon (0, 1) is the nonlinear nonlocal operator defined on smooth functions by (-Delta)(s)u( x) = -1/2 integral(RN) u(x + y) + u(x - y) - 2u(x)/vertical bar y vertical bar(N+2s) dy, for all x epsilon R-N. By combining variational and approximation methods, we provide the existence of two positive solutions to the problem (P).
引用
收藏
页码:837 / 860
页数:24
相关论文
共 23 条
[1]  
[Anonymous], 2014, EXISTENCE UNIQUENESS
[2]   ON THE EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR DIRICHLET'S PROBLEM FOR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Averna, Diego ;
Tersian, Stepan ;
Tornatore, Elisabetta .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (01) :253-266
[3]   A critical fractional equation with concave convex power nonlinearities [J].
Barrios, B. ;
Colorado, E. ;
Servadei, R. ;
Soria, F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04) :875-900
[4]   Semilinear problems for the fractional laplacian with a singular nonlinearity [J].
Barrios, Begona ;
De Bonis, Ida ;
Medina, Maria ;
Peral, Ireneo .
OPEN MATHEMATICS, 2015, 13 :390-407
[5]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[6]   CONVEXITY PROPERTIES OF DIRICHLET INTEGRALS AND PICONE-TYPE INEQUALITIES [J].
Brasco, Lorenzo ;
Franzina, Giovanni .
KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) :769-799
[7]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[8]   Nonlocal problems with critical Hardy nonlinearity [J].
Chen, Wenjing ;
Mosconi, Sunra ;
Squassina, Marco .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (11) :3065-3114
[9]   A FREE FRACTIONAL VISCOUS OSCILLATOR AS A FORCED STANDARD DAMPED VIBRATION [J].
Devillanova, Giuseppe ;
Marano, Giuseppe Carlo .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (02) :319-356
[10]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573