Dual Contrastive Network for Sequential Recommendation

被引:15
作者
Lin, Guanyu [1 ]
Gao, Chen [1 ]
Li, Yinfeng [1 ]
Zheng, Yu [1 ]
Li, Zhiheng [2 ]
Jin, Depeng [1 ]
Li, Yong [1 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Elect Engn, Beijing, Peoples R China
[2] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Automat, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22) | 2022年
基金
中国国家自然科学基金;
关键词
Sequential recommendation; Self-Supervised Learning; Contrastive Learning;
D O I
10.1145/3477495.3531918
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Widely applied in today's recommender systems, sequential recommendation predicts the next interacted item for a given user via his/her historical item sequence. However, sequential recommendation suffers data sparsity issue like most recommenders. To extract auxiliary signals from the data, some recent works exploit self-supervised learning to generate augmented data via dropout strategy, which, however, leads to sparser sequential data and obscure signals. In this paper, we propose Dual Contrastive Network (DCN) to boost sequential recommendation, from a new perspective of integrating auxiliary user-sequence for items. Specifically, we propose two kinds of contrastive learning. The first one is the dual representation contrastive learning that minimizes the distances between embeddings and sequence-representations of users/items. The second one is the dual interest contrastive learning which aims to self-supervise the static interest with the dynamic interest of next item prediction via auxiliary training. We also incorporate the auxiliary task of predicting next user for a given item's historical user sequence, which can capture the trends of items preferred by certain types of users. Experiments on benchmark datasets verify the effectiveness of our proposed method. Further ablation study also illustrates the boosting effect of the proposed components upon different sequential models.
引用
收藏
页码:2686 / 2691
页数:6
相关论文
共 50 条
  • [41] HyperCLR: A Personalized Sequential Recommendation Algorithm Based on Hypergraph and Contrastive Learning
    Zhang, Ruiqi
    Wang, Haitao
    He, Jianfeng
    MATHEMATICS, 2024, 12 (18)
  • [42] Knowledge-Guided Semantically Consistent Contrastive Learning for sequential recommendation
    Shi, Chenglong
    Yan, Surong
    Zhang, Shuai
    Wang, Haosen
    Lin, Kwei-Jay
    NEURAL NETWORKS, 2025, 185
  • [43] Feature-Aware Contrastive Learning With Bidirectional Transformers for Sequential Recommendation
    Du, Hanwen
    Yuan, Huanhuan
    Zhao, Pengpeng
    Wang, Deqing
    Sheng, Victor S.
    Liu, Yanchi
    Liu, Guanfeng
    Zhao, Lei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8192 - 8205
  • [44] Multi-view Contrastive Learning Network for Recommendation
    Bu, Xiya
    Ma, Ruixin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 319 - 330
  • [45] Temporal Density-aware Sequential Recommendation Networks with Contrastive Learning
    Wang, Jihu
    Shi, Yuliang
    Yu, Han
    Zhang, Kun
    Wang, Xinjun
    Yan, Zhongmin
    Li, Hui
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
  • [46] Contrastive Learning with Frequency-Domain Interest Trends for Sequential Recommendation
    Zhang, Yichi
    Yin, Guisheng
    Dong, Yuxin
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 141 - 150
  • [47] Multi-interest sequential recommendation with contrastive learning and temporal analysis
    Ma, Xiaowen
    Zhou, Qiang
    Li, Yongjun
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [48] Intent Contrastive Learning with Cross Subsequences for Sequential Recommendation
    Qin, Xiuyuan
    Yuan, Huanhuan
    Zhao, Pengpeng
    Liu, Guanfeng
    Zhuang, Fuzhen
    Sheng, Victor S.
    PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 548 - 556
  • [49] Dual-Contrastive for Federated Social Recommendation
    Luo, Linze
    Liu, Baisong
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [50] Sequential Recommendation with Dual Learning
    Zhang, Chenliang
    Shi, Lingfeng
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 53 - 60