PFlow: Reconstructing People Flow Recycling Large-Scale Social Survey Data

被引:47
|
作者
Sekimoto, Yoshihide [1 ]
Shibasaki, Ryosuke [1 ]
Kanasugi, Hiroshi [1 ]
Usui, Tomotaka [1 ]
Shimazaki, Yasunobu
机构
[1] Univ Tokyo, Ctr Spatial Informat Sci, Tokyo 1138654, Japan
关键词
Traffic control; Spatiotemporal phenomena; Intelligent transportation systems; Behavioral science; Urban areas; Cities and towns; Mobile radio mobility management; spatiotemporal data analysis; pervasive computing; intelligent transport; spatial information; traffic behavior analysis; people flow; people trip data; LOCATION;
D O I
10.1109/MPRV.2011.43
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Understanding people flow on a macroscopic scale requires reconstructing it from various forms of existing fragmentary spatiotemporal data. This article illustrates a process for reconstructing such data using existing person-trip survey data. © 2011 IEEE.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 31 条
  • [1] Data Collection for Traffic and Drivers' Behaviour Studies: a large-scale survey
    Bifulco, G. N.
    Galante, F.
    Pariota, L.
    Spena, Russo M.
    Del Gais, P.
    TRANSPORTATION: CAN WE DO MORE WITH LESS RESOURCES? - 16TH MEETING OF THE EURO WORKING GROUP ON TRANSPORTATION - PORTO 2013, 2014, 111 : 721 - 730
  • [2] Synthetic People Flow: Privacy-Preserving Mobility Modeling from Large-Scale Location Data in Urban Areas
    Tamura, Naoki
    Urano, Kenta
    Aoki, Shunsuke
    Yonezawa, Takuro
    Kawaguchi, Nobuo
    MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES, 2022, 419 : 553 - 567
  • [3] Exploiting Social Networks for Large-Scale Human Behavior Modeling
    Lane, Nicholas D.
    Xu, Ye
    Lu, Hong
    Campbell, Andrew T.
    Choudhury, Tanzeem
    Eisenman, Shane B.
    IEEE PERVASIVE COMPUTING, 2011, 10 (04) : 45 - 53
  • [4] Congestion Avoidance Routing Based on Large-Scale Social Signals
    He, Kun
    Xu, Zhongzhi
    Wang, Pu
    Deng, Lianbo
    Tu, Lai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (09) : 2613 - 2626
  • [5] A Lagrangian relaxation approach to large-scale flow interception problems
    Gzara, Fatma
    Erkut, Erhan
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 198 (02) : 405 - 411
  • [6] Large-scale simulation of traffic flow using Markov model
    Besenczi, Renato
    Batfai, Norbert
    Jeszenszky, Peter
    Major, Roland
    Monori, Fanny
    Ispany, Marton
    PLOS ONE, 2021, 16 (02):
  • [7] Large-Scale Spatiotemporal Fracture Data Completion in Sparse CrowdSensing
    Wang, En
    Zhang, Mijia
    Yang, Bo
    Yang, Yongjian
    Wu, Jie
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (07) : 7585 - 7601
  • [8] Data Management for Large-Scale Position-Tracking Systems
    Inoue, Fumiaki
    Zhang, Yongbing
    Ji, Yusheng
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2011, E94B (01) : 45 - 54
  • [9] Real-Time Probabilistic Data Fusion for Large-Scale IoT Applications
    Akbar, Adnan
    Kousiouris, George
    Pervaiz, Haris
    Sancho, Juan
    Ta-Shma, Paula
    Carrez, Francois
    Moessner, Klaus
    IEEE ACCESS, 2018, 6 : 10015 - 10027
  • [10] Edge Computing-Empowered Large-Scale Traffic Data Recovery Leveraging Low-Rank Theory
    Xiang, Chaocan
    Zhang, Zhao
    Qu, Yuben
    Lu, Dongyu
    Fan, Xiaochen
    Yang, Panlong
    Wu, Fan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (04): : 2205 - 2218