Measuring topology from dynamics by obtaining the Chern number from a linking number

被引:152
|
作者
Tarnowski, Matthias [1 ,2 ]
Uenal, F. Nur [3 ]
Flaeschner, Nick [1 ,2 ]
Rem, Benno S. [1 ,2 ]
Eckardt, Andre [3 ]
Sengstock, Klaus [1 ,2 ,4 ]
Weitenberg, Christof [1 ,2 ]
机构
[1] Univ Hamburg, Inst Laserphys, D-22761 Hamburg, Germany
[2] Hamburg Ctr Ultrafast Imaging, D-22761 Hamburg, Germany
[3] Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[4] Univ Hamburg, Zentrum Opt Quantentechnol, D-22761 Hamburg, Germany
关键词
FLOQUET; REALIZATION; MODEL;
D O I
10.1038/s41467-019-09668-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Integer-valued topological indices, characterizing nonlocal properties of quantum states of matter, are known to directly predict robust physical properties of equilibrium systems. The Chern number, e.g., determines the quantized Hall conductivity of an insulator. Using non-interacting fermionic atoms in a periodically driven optical lattice, here we demonstrate experimentally that the Chern number determines also the far-from-equilibrium dynamics of a quantum system. Extending a respective proposal to Floquet systems, we measure the linking number that characterizes the trajectories of momentum-space vortices emerging after a strong quench. We observe that it directly corresponds to the ground-state Chern number. This one-to-one relation between a dynamical and a static topological index allows us to experimentally map out the phase diagram of our system. Furthermore, we measure the instantaneous Chern number and show that it remains zero under the unitary dynamics.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Measuring topology from dynamics by obtaining the Chern number from a linking number
    Matthias Tarnowski
    F. Nur Ünal
    Nick Fläschner
    Benno S. Rem
    André Eckardt
    Klaus Sengstock
    Christof Weitenberg
    Nature Communications, 10
  • [2] Measuring the Second Chern Number from Nonadiabatic Effects
    Kolodrubetz, Michael
    PHYSICAL REVIEW LETTERS, 2016, 117 (01)
  • [3] Measuring the Chern number with quantum oscillations
    Wright, Anthony R.
    PHYSICAL REVIEW B, 2013, 87 (08):
  • [4] Scheme to Measure the Topological Number of a Chern Insulator from Quench Dynamics
    Wang, Ce
    Zhang, Pengfei
    Chen, Xin
    Yu, Jinlong
    Zhai, Hui
    PHYSICAL REVIEW LETTERS, 2017, 118 (18)
  • [5] Revealing Chern number from quantum metric
    Zhang, Anwei
    CHINESE PHYSICS B, 2022, 31 (04)
  • [6] Revealing Chern number from quantum metric
    张安伟
    Chinese Physics B, 2022, 31 (04) : 13 - 17
  • [7] Fast adiabatic method for measuring topological Chern number
    ZhiHuang Luo
    Bei Zeng
    Science China Physics, Mechanics & Astronomy, 2018, 61
  • [8] Fast adiabatic method for measuring topological Chern number
    Luo, ZhiHuang
    Zeng, Bei
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (05)
  • [9] Fast adiabatic method for measuring topological Chern number
    ZhiHuang Luo
    Bei Zeng
    Science China(Physics,Mechanics & Astronomy), 2018, Mechanics & Astronomy)2018 (05) : 83 - 84
  • [10] Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms
    Aidelsburger M.
    Lohse M.
    Schweizer C.
    Atala M.
    Barreiro J.T.
    Nascimbène S.
    Cooper N.R.
    Bloch I.
    Goldman N.
    Nature Physics, 2015, 11 (2) : 162 - 166