A hyperchaos generated from Lorenz system

被引:265
作者
Wang, Xingyuan [1 ]
Wang, Mingjun [1 ]
机构
[1] Dalian Univ Technol, Sch Elect & Informat Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Lorenz system; hyperchaos; Lyapunov exponents; bifurcation;
D O I
10.1016/j.physa.2008.02.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents a four-dimension hyperchaotic Lorenz system, obtained by adding a nonlinear controller to Lorenz chaotic system. The hyperchaotic Lorenz system is studied by bifurcation diagram, Lyapunov exponents spectrum and phase diagram. Numerical simulations show that the new system's behavior can be convergent, divergent, periodic, chaotic and hyperchaotic when the parameter varies. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3751 / 3758
页数:8
相关论文
共 19 条
[11]   Occurrence of regular, chaotic and hyperchaotic behavior in a family of modified Rossler hyperchaotic systems [J].
Nikolov, S ;
Clodong, S .
CHAOS SOLITONS & FRACTALS, 2004, 22 (02) :407-431
[12]   Adaptive synchronization of hyperchaotic Chen system with uncertain parameters [J].
Park, JH .
CHAOS SOLITONS & FRACTALS, 2005, 26 (03) :959-964
[13]   Synchronizing hyperchaos with a scalar transmitted signal [J].
Peng, JH ;
Ding, EJ ;
Ding, M ;
Yang, W .
PHYSICAL REVIEW LETTERS, 1996, 76 (06) :904-907
[14]   A comparative study of computation of Lyapunov spectra with different algorithms [J].
Ramasubramanian, K ;
Sriram, MS .
PHYSICA D, 2000, 139 (1-2) :72-86
[15]   EQUATION FOR HYPERCHAOS [J].
ROSSLER, OE .
PHYSICS LETTERS A, 1979, 71 (2-3) :155-157
[16]  
WANG GR, 2001, CHAOTIC CONTROL SYNC, P281
[17]  
Wang Xiaorui., 2003, SENSYS 03, P28, DOI DOI 10.1145/958491.958496
[18]   Controlling hyperchaos in the new hyperchaotic Chen system [J].
Yan, ZY .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 168 (02) :1239-1250
[19]   Controlling and tracking hyperchaotic Rossler system via active backstepping design [J].
Zhang, H ;
Ma, XK ;
Li, M ;
Zou, JL .
CHAOS SOLITONS & FRACTALS, 2005, 26 (02) :353-361