A non-iterative sampling Bayesian method for linear mixed models with normal independent distributions

被引:8
作者
Lachos, Victor H. [1 ]
Cabral, Celso R. B. [2 ]
Abanto-Valle, Carlos A. [3 ]
机构
[1] Univ Estadual Campinas, IMECC, Dept Stat, BR-13083859 Sao Paulo, Brazil
[2] Univ Fed Amazonas, Dept Stat, BR-69080005 Manaus, Amazonas, Brazil
[3] Univ Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, Brazil
基金
巴西圣保罗研究基金会;
关键词
Gibbs algorithms; inverse Bayes formulae; MCMC; linear mixed models; normal/independent distributions; sampling/importance resampling; MULTIVARIATE-T-DISTRIBUTION; INFLUENCE DIAGNOSTICS; IMPROPER PRIORS; LOCAL INFLUENCE; REGRESSION; INFERENCE; ALGORITHMS; POSTERIORS;
D O I
10.1080/02664763.2011.603292
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we utilize normal/independent (NI) distributions as a tool for robust modeling of linear mixed models (LMM) under a Bayesian paradigm. The purpose is to develop a non-iterative sampling method to obtain i.i.d. samples approximately from the observed posterior distribution by combining the inverse Bayes formulae, sampling/importance resampling and posterior mode estimates from the expectation maximization algorithm to LMMs with NI distributions, as suggested by Tan et al. [33]. The proposed algorithm provides a novel alternative to perfect sampling and eliminates the convergence problems of Markov chain Monte Carlo methods. In order to examine the robust aspects of the NI class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on model selection criteria are given. The new methodologies are exemplified through a real data set, illustrating the usefulness of the proposed methodology.
引用
收藏
页码:531 / 549
页数:19
相关论文
共 35 条
  • [1] [Anonymous], 2011, R: A Language and Environment for Statistical Computing
  • [2] [Anonymous], 2001, BAYES EMPIRICAL BAYE
  • [3] Brooks SP, 2002, J R STAT SOC B, V64, P616
  • [4] Bayesian Case Influence Diagnostics for Survival Models
    Cho, Hyunsoon
    Ibrahim, Joseph G.
    Sinha, Debajyoti
    Zhu, Hongtu
    [J]. BIOMETRICS, 2009, 65 (01) : 116 - 124
  • [5] Cook R. D., 1982, RESIDUALS INFLUENCE
  • [6] COOK RD, 1986, J ROY STAT SOC B MET, V48, P133
  • [7] Cox D.R., 1974, THEORETICAL STAT
  • [8] Bayesian approach for nonlinear random effects models
    Dey, DK
    Chen, MH
    Chang, H
    [J]. BIOMETRICS, 1997, 53 (04) : 1239 - 1252
  • [9] Multivariate student-t regression models:: Pitfalls and inference
    Fernandez, C
    Steel, MFJ
    [J]. BIOMETRIKA, 1999, 86 (01) : 153 - 167
  • [10] Objective Bayesian analysis for the Student-t regression model
    Fonseca, Thais C. O.
    Ferreira, Marco A. R.
    Migon, Helio S.
    [J]. BIOMETRIKA, 2008, 95 (02) : 325 - 333