Stability of multi-Jensen mappings in non-Archimedean normed spaces

被引:27
作者
Xu, Tian Zhou [1 ]
机构
[1] Beijing Inst Technol, Sch Math, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
ULAM-RASSIAS STABILITY; FUNCTIONAL-EQUATIONS;
D O I
10.1063/1.3684746
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the stability of themulti-Jensen mappings in non-Archimedean normed spaces. The results improve and extend some recent results. (C) 2012 American Institute of Physics. [doi:10.1063/1.3684746]
引用
收藏
页数:9
相关论文
共 27 条
[1]   Stability of functional equations in single variable [J].
Agarwal, RP ;
Xu, B ;
Zhang, WN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (02) :852-869
[2]  
[Anonymous], 2009, CAUCHYS EQUATION JEN
[3]   On the quotient stability of a family of functional equations [J].
Brzdek, Janusz .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4396-4404
[4]   Stability of multi-additive mappings in non-Archimedean normed spaces [J].
Cieplinski, Krzysztof .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :376-383
[5]   ON MULTI-JENSEN FUNCTIONS AND JENSEN DIFFERENCE [J].
Cieplinski, Krzysztof .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (04) :729-737
[6]   Stability of the multi-Jensen equation [J].
Cieplinski, Krzysztof .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) :249-254
[7]  
Forti G.L., 1995, AEQUATIONES MATH, V50, P143, DOI DOI 10.1007/BF01831117
[8]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[9]   Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces [J].
Gordji, M. Eshaghi ;
Savadkouhi, M. B. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (10) :1198-1202
[10]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224