Synchronization of systems with multiplicative noise

被引:19
作者
Caraballo, Tomas [1 ]
Kloeden, Peter E. [2 ]
Neuenkirch, Andreas [2 ]
机构
[1] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
[2] Univ Frankfurt, Fachbereich Math, D-60054 Frankfurt, Germany
关键词
synchronization; random dynamical systems; multiplicative noise;
D O I
10.1142/S0219493708002184
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The synchronization of Stratonovich stochastic differential equations (SDE) with a one-sided dissipative Lipschitz drift and linear multiplicative noise is investigated by transforming the SDE to random ordinary differential equations (RODE) and synchronizing their dynamics. In terms of the original SDE, this gives synchronization only when the driving noises are the same. Otherwise, the synchronization is modulo exponential factors involving Ornstein-Uhlenbeck processes corresponding to the driving noises. Moreover, this occurs no matter how large the intensity coefficients of the noise.
引用
收藏
页码:139 / 154
页数:16
相关论文
共 11 条
[1]  
AFRAIMOVICH VS, 1998, INT C DIFF EQ LISB 1, P3
[2]  
Caraballo T, 2006, DISCRETE CONT DYN-B, V6, P1199
[3]   The persistence of synchronization under environmental noise [J].
Caraballo, T ;
Kloeden, PE .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2059) :2257-2267
[4]   Exponentially stable stationary solutions for stochastic evolution equations and their perturbation [J].
Caraballo, T ;
Kloeden, PE ;
Schmalfuss, B .
APPLIED MATHEMATICS AND OPTIMIZATION, 2004, 50 (03) :183-207
[5]   Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain [J].
Caraballo, Tomas ;
Chueshov, Igor D. ;
Kloeden, Peter E. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (05) :1489-1507
[6]   Upper semicontinuity of attractors and synchronization [J].
Carvalho, AN ;
Rodrigues, HM ;
Dlotko, T .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 220 (01) :13-41
[7]   The conjugacy of stochastic and random differential equations and the existence of global attractors [J].
Imkeller P. ;
Schmalfuss B. .
Journal of Dynamics and Differential Equations, 2001, 13 (2) :215-249
[8]  
Kloeden P., 2003, ELECTRON J DIFFER EQ, V1, P1
[9]   Nonautonomous attractors of switching systems [J].
Kloeden, P. E. .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2006, 21 (02) :209-230
[10]   Towards a theory of random numerical dynamics [J].
Kloeden, PE ;
Keller, H ;
Schmalfuss, B .
STOCHASTIC DYNAMICS, 1999, :259-282