Numerical studies of the cubic non-linear Schrodinger equation

被引:16
作者
El-Danaf, Talaat S. [1 ]
Ramadan, Mohamed A. [1 ]
Abd Alaal, Faisal E. I. [1 ]
机构
[1] Menoufia Univ, Fac Sci, Dept Math, Shibin Al Kawm, Egypt
关键词
Non-polynomial spline; Non-linear Schrodinger equation; Von Neumann stability; BOUNDARY-VALUE-PROBLEMS;
D O I
10.1007/s11071-011-0014-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we are concerned with the problem of applying cubic non-polynomial spline functions to develop a numerical method for obtaining approximation for the solution for cubic non-linear Schrodinger equation. The truncation error of the method is theoretically analyzed. Using the Von Neumann method, the proposed method is shown to be unconditionally stable. The linearization technique is carried out to solve the system and to prove that the method is unconditionally stable. Two numerical examples are included to illustrate the practical implementation of the proposed method.
引用
收藏
页码:619 / 627
页数:9
相关论文
共 15 条
[11]   Non-polynomial cubic spline methods for the solution of parabolic equations [J].
Rashidinia, J. ;
Mohammadi, R. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (05) :843-850
[12]   Variational iteration method for solving cubic nonlinear Schrodinger equation [J].
Sweilam, N. H. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 207 (01) :155-163
[13]   ANALYTICAL AND NUMERICAL ASPECTS OF CERTAIN NONLINEAR EVOLUTION-EQUATIONS .2. NUMERICAL, NONLINEAR SCHRODINGER-EQUATION [J].
TAHA, TR ;
ABLOWITZ, MJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (02) :203-230
[14]   A finite-difference method for solving the cubic Schrodinger equation [J].
Twizell, EH ;
Bratsos, AG ;
Newby, JC .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1997, 43 (01) :67-75
[15]  
Zakharov V. E., 1972, Soviet Physics - JETP, V35, P908