Numerical studies of the cubic non-linear Schrodinger equation

被引:16
作者
El-Danaf, Talaat S. [1 ]
Ramadan, Mohamed A. [1 ]
Abd Alaal, Faisal E. I. [1 ]
机构
[1] Menoufia Univ, Fac Sci, Dept Math, Shibin Al Kawm, Egypt
关键词
Non-polynomial spline; Non-linear Schrodinger equation; Von Neumann stability; BOUNDARY-VALUE-PROBLEMS;
D O I
10.1007/s11071-011-0014-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we are concerned with the problem of applying cubic non-polynomial spline functions to develop a numerical method for obtaining approximation for the solution for cubic non-linear Schrodinger equation. The truncation error of the method is theoretically analyzed. Using the Von Neumann method, the proposed method is shown to be unconditionally stable. The linearization technique is carried out to solve the system and to prove that the method is unconditionally stable. Two numerical examples are included to illustrate the practical implementation of the proposed method.
引用
收藏
页码:619 / 627
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 2003, Optical Solitons
[2]  
Bratsos A.G., 2001, Korean J. Comput. Appl. Math, V8, P459
[3]   A discrete Adomian decomposition method for discrete nonlinear Schrodinger equations [J].
Bratsos, Athanassios ;
Ehrhardt, Matthias ;
Famelis, Ioannis Th. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (01) :190-205
[4]  
DAELE MV, 1994, J COMPUT APPL MATH, V51, P383
[5]   A NUMERICAL STUDY OF THE NONLINEAR SCHRODINGER-EQUATION [J].
GRIFFITHS, DF ;
MITCHELL, AR ;
MORRIS, JL .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 45 (1-3) :177-215
[6]  
Hasegawa A., 1995, Solitons in Optical Communications
[7]  
Islam S, 2005, APPL MATH COMPUT, V168, P152
[8]   A class of methods based on non-polynomial sextic spline functions for the solution of a special fifth-order boundary-value problems [J].
Khan, Muhammad Azam ;
Siraj-ul-Islam ;
Tirmizi, Ikram A. ;
Twizell, E. H. ;
Ashraf, Saadat .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (02) :651-660
[9]   A differential quadrature algorithm for nonlinear Schrodinger equation [J].
Korkmaz, Alper ;
Dag, Idris .
NONLINEAR DYNAMICS, 2009, 56 (1-2) :69-83
[10]   Polynomial and nonpolynomial spline approaches to the numerical solution of second order boundary value problems [J].
Ramadan, M. A. ;
Lashien, I. F. ;
Zahra, W. K. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 184 (02) :476-484