Galois subfields of inertially split division algebras

被引:3
作者
Hanke, Timo [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math D, D-52062 Aachen, Germany
关键词
Noncommutative valuation; Division algebra; Maximal subfield; Galois subfield; Residue field; Crossed product; Noncrossed product; Generic construction; NONCROSSED PRODUCTS; CROSSED-PRODUCTS;
D O I
10.1016/j.jalgebra.2011.08.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a valued division algebra, finite-dimensional over its center F. Assume D has an unramified splitting field. The paper shows that if D contains a maximal subfield which is Galois over F (i.e. D is a crossed product) then the residue division algebra (D) over bar contains a maximal subfield which is Galois over the residue field (F) over bar. This theorem captures an essential argument of previously known noncrossed product proofs in the more general language of noncommutative valuations. The result is particularly useful in connection with explicit constructions. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 151
页数:5
相关论文
共 50 条
[41]   SK1 of graded division algebras [J].
R. Hazrat ;
A. R. Wadsworth .
Israel Journal of Mathematics, 2011, 183 :117-163
[42]   Special forms of two symbols are division algebras [J].
Aravire, R ;
Jacob, B .
MANUSCRIPTA MATHEMATICA, 2002, 108 (02) :139-162
[43]   On, around, and beyond Frobenius' theorem on division algebras [J].
Bresar, Matej ;
Shulman, Victor S. .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (07) :1369-1381
[44]   Division algebras of prime degree with infinite genus [J].
Tikhonov, Sergey V. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 292 (01) :256-259
[45]   Homomorphisms and involutions of unramified henselian division algebras [J].
Tikhonov S.V. ;
Yanchevskii V.I. .
Journal of Mathematical Sciences, 2015, 209 (4) :657-664
[46]   Division algebras and transitivity of group actions on buildings [J].
Zaremsky, Matthew C. B. .
ADVANCES IN GEOMETRY, 2015, 15 (02) :133-142
[47]   A note on topological divisors of zero and division algebras [J].
J. Carlos Marcos ;
Ángel Rodríguez-Palacios ;
M. Victoria Velasco .
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2015, 109 :93-100
[48]   Division algebras in linear Gr-categories [J].
Huang, Hua-Lin ;
Van Oystaeyen, Fred ;
Zhang, Yinhuo .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (05) :859-872
[49]   A Galois Correspondence for Reduced Crossed Products of Simple C*-algebras by Discrete Groups [J].
Cameron, Jan ;
Smith, Roger R. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (05) :1103-1125
[50]   Projective bases of division algebras and groups of central type [J].
Aljadeff, E ;
Haile, D ;
Natapov, M .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 146 (1) :317-335