Galois subfields of inertially split division algebras

被引:3
作者
Hanke, Timo [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math D, D-52062 Aachen, Germany
关键词
Noncommutative valuation; Division algebra; Maximal subfield; Galois subfield; Residue field; Crossed product; Noncrossed product; Generic construction; NONCROSSED PRODUCTS; CROSSED-PRODUCTS;
D O I
10.1016/j.jalgebra.2011.08.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a valued division algebra, finite-dimensional over its center F. Assume D has an unramified splitting field. The paper shows that if D contains a maximal subfield which is Galois over F (i.e. D is a crossed product) then the residue division algebra (D) over bar contains a maximal subfield which is Galois over the residue field (F) over bar. This theorem captures an essential argument of previously known noncrossed product proofs in the more general language of noncommutative valuations. The result is particularly useful in connection with explicit constructions. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 151
页数:5
相关论文
共 50 条
[31]   Sequentially split *-homomorphisms between C*-algebras [J].
Barlak, Selcuk ;
Szabo, Gabor .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (13)
[32]   Braided module and comodule algebras, Galois extensions and elements of trace 1 [J].
Da Rocha, Mauricio ;
Guccione, Jorge A. ;
Guccione, Juan J. .
JOURNAL OF ALGEBRA, 2007, 307 (02) :727-768
[33]   Supersoluble crossed product criterion for division algebras [J].
Ebrahimian, R ;
Kiani, D ;
Mahdavi-Hezavehi, M .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 145 (1) :325-331
[34]   SIMULTANEOUS EMBEDDINGS OF FINITE DIMENSIONAL DIVISION ALGEBRAS [J].
Rowen, Louis ;
Saltman, David .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (03) :737-744
[35]   Invariant subalgebras of involutorial quaternion division algebras [J].
Prokopchuk A.V. ;
Yanchevskii V.I. .
Journal of Mathematical Sciences, 2012, 183 (5) :685-691
[36]   Special forms of two symbols are division algebras [J].
Roberto Aravire ;
Bill Jacob .
manuscripta mathematica, 2002, 108 :139-162
[37]   Division algebras of prime degree with infinite genus [J].
Sergey V. Tikhonov .
Proceedings of the Steklov Institute of Mathematics, 2016, 292 :256-259
[38]   Supersoluble crossed product criterion for division algebras [J].
R. Ebrahimian ;
D. Kiani ;
M. Mahdavi-Hezavehi .
Israel Journal of Mathematics, 2005, 145 :325-331
[39]   SK1 of graded division algebras [J].
R. Hazrat ;
A. R. Wadsworth .
Israel Journal of Mathematics, 2011, 183 :117-163
[40]   A note on topological divisors of zero and division algebras [J].
Carlos Marcos, J. ;
Rodriguez-Palacios, Angel ;
Victoria Velasco, M. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (01) :93-100