Galois subfields of inertially split division algebras

被引:3
作者
Hanke, Timo [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math D, D-52062 Aachen, Germany
关键词
Noncommutative valuation; Division algebra; Maximal subfield; Galois subfield; Residue field; Crossed product; Noncrossed product; Generic construction; NONCROSSED PRODUCTS; CROSSED-PRODUCTS;
D O I
10.1016/j.jalgebra.2011.08.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a valued division algebra, finite-dimensional over its center F. Assume D has an unramified splitting field. The paper shows that if D contains a maximal subfield which is Galois over F (i.e. D is a crossed product) then the residue division algebra (D) over bar contains a maximal subfield which is Galois over the residue field (F) over bar. This theorem captures an essential argument of previously known noncrossed product proofs in the more general language of noncommutative valuations. The result is particularly useful in connection with explicit constructions. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 151
页数:5
相关论文
共 50 条
[21]   Transcendence degree of division algebras [J].
Bell, Jason P. .
ISRAEL JOURNAL OF MATHEMATICS, 2012, 190 (01) :195-211
[22]   Gauge theory and the division algebras [J].
Figueroa-O'Farrill, JM .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 32 (02) :227-240
[23]   UNITARY GRASSMANNIANS OF DIVISION ALGEBRAS [J].
NIKITA A. KARPENKO .
Transformation Groups, 2016, 21 :115-127
[24]   Division Algebras and Quantum Theory [J].
Baez, John C. .
FOUNDATIONS OF PHYSICS, 2012, 42 (07) :819-855
[25]   Division Algebras and Quantum Theory [J].
John C. Baez .
Foundations of Physics, 2012, 42 :819-855
[26]   On absolute Galois splitting fields of central simple algebras [J].
Hanke, Timo .
JOURNAL OF NUMBER THEORY, 2007, 126 (01) :74-86
[27]   Extending structures, Galois groups and supersolvable associative algebras [J].
Agore, A. L. ;
Militaru, G. .
MONATSHEFTE FUR MATHEMATIK, 2016, 181 (01) :1-33
[28]   Genus of division algebras over fields with infinite transcendence degree [J].
Tikhonov, Sergey V. .
ARCHIV DER MATHEMATIK, 2025, :115-121
[29]   Tensor products of division algebras and fields [J].
Rowen, Louis ;
Saltman, David J. .
JOURNAL OF ALGEBRA, 2013, 394 :296-309
[30]   DIVISION ALGEBRAS WITH RADICABLE MULTIPLICATIVE GROUPS [J].
Mahdavi-Hezavehi, M. ;
Motiee, M. .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) :4084-4096