All-solid-state electric double layer supercapacitors using Li1.3Al0.3Ti1.7(PO4)3 reinforced solid polymer electrolyte

被引:10
作者
Sharma, Shrishti [1 ]
Singh, M. Dinachandra [1 ]
Dalvi, Anshuman [1 ]
机构
[1] BITS Pilani, Dept Phys, Pilani Campus,RJ 333031, Pilani, Rajasthan, India
关键词
Solid-state supercapacitor; Composite polymer electrolyte; Solid polymer electrolyte; Electric double layer supercapacitor; IONIC LIQUID; ACTIVATED CARBON; PERFORMANCE; LITHIUM; TRANSPORT; CONDUCTIVITY; TECHNOLOGIES; TEMPERATURE; CAPACITORS; ALCOHOL);
D O I
10.1016/j.est.2022.104178
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, we report the fabrication and characterization of all-solid-state supercapacitors based on a conductive filler dispersed solid polymer electrolyte. Fast ionic Li1.3Al0.3Ti1.7(PO4)3 (LATP) reinforced PEO-PEGLITFSI composite solid polymer electrolyte (CSPE) membranes are prepared by milling assisted route. The electric double-layer capacitor (EDLC) cells, using a hot-roll lamination technique, are fabricated using a CSPE membrane as electrolyte and activated charcoal (surface area - 817m2g- 1) on graphite sheet as electrode. The EDLCs display appreciable areal capacitance of - 12 Fcm- 2 and -40 Fcm- 2 at 40 degrees C and 80 degrees C, respectively at -0.65 mAcm2 and 2 V. These solid-state EDLCs at 40 degrees C exhibit stability up to -16,000 cycles. Further, the electrode-electrolyte (solid-solid) interface remains quite stable after the charge-discharge cycling. The electrical conductivity of the CSPE membranes correlates well with the EDLC performance. The LATP content in the CSPE membranes play important role in enhancing the capacitance. The present investigation suggests that CSPE membranes with conductivity between -10- 4-10- 5 Scm- 1 are useful for low-power EDLC applications. The EDLCs cells with LATP dispersed CSPE exhibit better stability during thermal cycling between 40 degrees C-80 degrees C.
引用
收藏
页数:13
相关论文
共 68 条
[1]   Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges [J].
Alipoori, Saeideh ;
Mazinani, Saeedeh ;
Aboutalebi, Seyed Hamed ;
Sharif, Farhad .
JOURNAL OF ENERGY STORAGE, 2020, 27
[2]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[3]  
Aono H., 1990, ELECTROCHEM SOC, V137, P385
[4]   Reflow Soldering-Resistant Solid-State 3D Micro-Supercapacitors Based on Ionogel Electrolyte for Powering the Internet of Things [J].
Asbani, B. ;
Bounor, B. ;
Robert, K. ;
Douard, C. ;
Athouel, L. ;
Lethien, C. ;
Le Bideau, J. ;
Brousse, T. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (10)
[5]   High temperature solid-state supercapacitor designed with ionogel electrolyte [J].
Asbani, Bouchra ;
Douard, Camille ;
Brousse, Thierry ;
Le Bideau, Jean .
ENERGY STORAGE MATERIALS, 2019, 21 :439-445
[6]   All-solid state supercapacitors operating at 3.5 V by using ionic liquid based polymer electrolytes [J].
Ayalneh Tiruye, Girum ;
Munoz-Torrero, David ;
Palma, Jesus ;
Anderson, Marc ;
Marcilla, Rebeca .
JOURNAL OF POWER SOURCES, 2015, 279 :472-480
[7]   Pinecone-derived porous activated carbon for high performance all-solid-state electrical double layer capacitors fabricated with flexible gel polymer electrolytes [J].
Bhat, Md Yasir ;
Yadav, Nitish ;
Hashmi, S. A. .
ELECTROCHIMICA ACTA, 2019, 304 :94-108
[8]   NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries [J].
Bonizzoni, Simone ;
Ferrara, Chiara ;
Berbenni, Vittorio ;
Anselmi-Tamburini, Umberto ;
Mustarelli, Piercarlo ;
Tealdi, Cristina .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (11) :6142-6149
[9]   ION-TRANSPORT IN POLYMER ELECTROLYTES [J].
CAMERON, GG ;
INGRAM, MD ;
HARVIE, JL .
FARADAY DISCUSSIONS, 1989, 88 :55-+
[10]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184