Particle Swarm Optimization: A Wrapper-Based Feature Selection Method for Ransomware Detection and Classification

被引:11
|
作者
Abbasi, Muhammad Shabbir [1 ,2 ]
Al-Sahaf, Harith [1 ]
Welch, Ian [1 ]
机构
[1] Victoria Univ Wellington, Sch Engn & Comp Sci, POB 600, Wellington 6140, New Zealand
[2] Univ Agr Faisalabad, Dept Comp Sci, Faisalabad, Punjab, Pakistan
关键词
Evolutionary computation; Ransomware detection; Feature selection;
D O I
10.1007/978-3-030-43722-0_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ransomware has emerged as a grave cyber threat. Many of the existing ransomware detection and classification models use datasets created through dynamic or behaviour analysis of ransomware, hence known as behaviour-based detection models. A big challenge in automated behaviour-based ransomware detection and classification is high dimensional data with numerous features distributed into various groups. Feature selection algorithms usually help to deal with high dimensionality for improving classification performance. In connection with ransomware detection and classification, the majority of the feature selection methods used in existing literature ignore the varying importance of various feature groups within ransomware behaviour analysis data set. For ransomware detection and classification, we propose a two-stage feature selection method that considers the varying importance of each of the feature groups in the dataset. The proposed method utilizes particle swarm optimization, a wrapper-based feature selection algorithm, for selection of the optimal number of features from each feature group to produce better classification performance. Although the proposed method shows comparable performance for binary classification, it performs significantly better for multi-class classification than existing feature selection method used for this purpose.
引用
收藏
页码:181 / 196
页数:16
相关论文
共 50 条
  • [21] Particle swarm optimization-based feature selection in sentiment classification
    Lin Shang
    Zhe Zhou
    Xing Liu
    Soft Computing, 2016, 20 : 3821 - 3834
  • [22] Particle Swarm Optimization Based Feature Selection in Mammogram Mass Classification
    Wong, Man To
    He, Xiangjian
    Hung Nguyen
    Yeh, Wei-Chang
    2012 INTERNATIONAL CONFERENCE ON COMPUTERIZED HEALTHCARE (ICCH), 2012, : 151 - +
  • [23] Feature Selection for Classification Using Particle Swarm Optimization
    Brezocnik, Lucija
    17TH IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES - IEEE EUROCON 2017 CONFERENCE PROCEEDINGS, 2017, : 966 - 971
  • [24] A wrapper-based feature selection approach using osprey optimisation for software fault detection
    Rath, Pradeep Kumar
    Ghosh, Soumili
    Gourisaria, Mahendra Kumar
    Mahato, Susmita
    Das, Himansu
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2025, 18 (01)
  • [25] Building lightweight intrusion detection system using wrapper-based feature selection mechanisms
    Li, Yang
    Wang, Jun-Li
    Tian, Zhi-Hong
    Lu, Tian-Bo
    Young, Chen
    COMPUTERS & SECURITY, 2009, 28 (06) : 466 - 475
  • [26] A discrete particle swarm optimization method for feature selection in binary classification problems
    Unler, Alper
    Murat, Alper
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 206 (03) : 528 - 539
  • [27] Wrapper-based feature selection: how important is the wrapped classifier?
    Bajer, Drazen
    Dudjak, Mario
    Zoric, Bruno
    PROCEEDINGS OF 2020 INTERNATIONAL CONFERENCE ON SMART SYSTEMS AND TECHNOLOGIES (SST 2020), 2020, : 97 - 105
  • [28] Particle swarm optimization based on filter-based population initialization method for feature selection in classification
    Xue Y.
    Cai X.
    Jia W.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (06) : 7355 - 7366
  • [29] Stability of Filter- and Wrapper-Based Feature Subset Selection
    Wald, Randall
    Khoshgoftaar, Taghi M.
    Napolitano, Amri
    2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, : 374 - 380
  • [30] A New Wrapper-Based Feature Selection Technique with Fireworks Algorithm for Android Malware Detection
    Guendouz, Mohamed
    Amine, Abdelmalek
    INTERNATIONAL JOURNAL OF SOFTWARE SCIENCE AND COMPUTATIONAL INTELLIGENCE-IJSSCI, 2022, 14 (01):