On meta- and mega-analyses for gene-environment interactions

被引:2
|
作者
Huang, Jing [1 ]
Liu, Yulun [1 ]
Vitale, Steve [1 ]
Penning, Trevor M. [2 ]
Whitehead, Alexander S. [2 ]
Blair, Ian A. [2 ]
Vachani, Anil [3 ]
Clapper, Margie L. [4 ]
Muscat, Joshua E. [5 ]
Lazarus, Philip [6 ]
Scheet, Paul [7 ]
Moore, Jason H. [1 ]
Chen, Yong [1 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] Univ Penn, Ctr Excellence Environm Toxicol, Dept Syst Pharmacol & Translat Therapeut, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Med, Perelman Sch Med, Pulm Allergy & Crit Care Div, Philadelphia, PA 19104 USA
[4] Fox Chase Canc Ctr, Canc Prevent & Control Program, 7701 Burholme Ave, Philadelphia, PA 19111 USA
[5] Penn State Coll Med, Dept Publ Hlth Sci, Hershey, PA USA
[6] Washington State Univ, Dept Pharmaceut Sci, Spokane, WA USA
[7] Univ Texas MD Anderson Canc Ctr, Dept Epidemiol, Houston, TX 77030 USA
关键词
fixed effect model; gene-environment interaction; mega-analysis; meta-analysis; random-effects model; INDIVIDUAL PARTICIPANT DATA; GENOME-WIDE ASSOCIATION; BODY-MASS INDEX; PATIENT DATA; METAANALYSIS; DESIGN; CANCER; LOCI; EFFICIENCY; VARIANTS;
D O I
10.1002/gepi.22085
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gene-by-environment (G x E) interactions are important in explaining the missing heritability and understanding the causation of complex diseases, but a single, moderately sized study often has limited statistical power to detect such interactions. With the increasing need for integrating data and reporting results from multiple collaborative studies or sites, debate over choice between mega- versus meta-analysis continues. In principle, data from different sites can be integrated at the individual level into a mega data set, which can be fit by a joint mega-analysis. Alternatively, analyses can be done at each site, and results across sites can be combined through a meta-analysis procedure without integrating individual level data across sites. Although mega-analysis has been advocated in several recent initiatives, meta-analysis has the advantages of simplicity and feasibility, and has recently led to several important findings in identifying main genetic effects. In this paper, we conducted empirical and simulation studies, using data from a G x E study of lung cancer, to compare the mega- and meta-analyses in four commonly used G x E analyses under the scenario that the number of studies is small and sample sizes of individual studies are relatively large. We compared the two data integration approaches in the context of fixed effect models and random effects models separately. Our investigations provide valuable insights in understanding the differences between mega- and meta-analyses in practice of combining small number of studies in identifying G x E interactions.
引用
收藏
页码:876 / 886
页数:11
相关论文
共 50 条
  • [31] Gene-Environment Interactions for Parkinson's Disease
    Reynoso, Alexandra
    Torricelli, Roberta
    Jacobs, Benjamin Meir
    Shi, Jingchunzi
    Aslibekyan, Stella
    Norcliffe-Kaufmann, Lucy
    Noyce, Alastair J.
    Heilbron, Karl
    ANNALS OF NEUROLOGY, 2024, 95 (04) : 677 - 687
  • [32] Gene-Environment Interactions and Cardiovascular Risk Factors
    Ordovas, Jose M.
    REVISTA ESPANOLA DE CARDIOLOGIA, 2009, : 39B - 51B
  • [33] Investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors
    Rudolph, Anja
    Milne, Roger L.
    Truong, Therese
    Knight, Julia A.
    Seibold, Petra
    Flesch-Janys, Dieter
    Behrens, Sabine
    Eilber, Ursula
    Bolla, Manjeet K.
    Wang, Qin
    Dennis, Joe
    Dunning, Alison M.
    Shah, Mitul
    Munday, Hannah R.
    Darabi, Hatef
    Eriksson, Mikael
    Brand, Judith S.
    Olson, Janet
    Vachon, Celine M.
    Hallberg, Emily
    Esteban Castelao, J.
    Carracedo, Angel
    Torres, Maria
    Li, Jingmei
    Humphreys, Keith
    Cordina-Duverger, Emilie
    Menegaux, Florence
    Flyger, Henrik
    Nordestgaard, Borge G.
    Nielsen, Sune F.
    Yesilyurt, Betul T.
    Floris, Giuseppe
    Leunen, Karin
    Engelhardt, Ellen G.
    Broeks, Annegien
    Rutgers, Emiel J.
    Glendon, Gord
    Mulligan, Anna Marie
    Cross, Simon
    Reed, Malcolm
    Gonzalez-Neira, Anna
    Arias Perez, Jose Ignacio
    Provenzano, Elena
    Apicella, Carmel
    Southey, Melissa C.
    Spurdle, Amanda
    Haeberle, Lothar
    Beckmann, Matthias W.
    Ekici, Arif B.
    Dieffenbach, Aida Karina
    INTERNATIONAL JOURNAL OF CANCER, 2015, 136 (06) : E685 - E696
  • [34] Leveraging gene-environment interactions and endotypes for asthma gene discovery
    Bonnelykke, Klaus
    Ober, Carole
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2016, 137 (03) : 667 - 679
  • [35] Adaptive Tests for Detecting Gene-Gene and Gene-Environment Interactions
    Pan, Wei
    Basu, Saonli
    Shen, Xiaotong
    HUMAN HEREDITY, 2011, 72 (02) : 98 - 109
  • [36] Genome-wide investigation of gene-environment interactions in colorectal cancer
    Siegert, Sabine
    Hampe, Jochen
    Schafmayer, Clemens
    von Schoenfels, Witigo
    Egberts, Jan-Hendrik
    Forsti, Asta
    Chen, Bowang
    Lascorz, Jesus
    Hemminki, Kari
    Franke, Andre
    Nothnagel, Michael
    Noethlings, Ute
    Krawczak, Michael
    HUMAN GENETICS, 2013, 132 (02) : 219 - 231
  • [37] Identification of New Genetic Susceptibility Loci for Breast Cancer Through Consideration of Gene-Environment Interactions
    Schoeps, Anja
    Rudolph, Anja
    Seibold, Petra
    Dunning, Alison M.
    Milne, Roger L.
    Bojesen, Stig E.
    Swerdlow, Anthony
    Andrulis, Irene
    Brenner, Hermann
    Behrens, Sabine
    Orr, Nicholas
    Jones, Michael
    Ashworth, Alan
    Li, Jingmei
    Cramp, Helen
    Connley, Dan
    Czene, Kamila
    Darabi, Hatef
    Chanock, Stephen J.
    Lissowska, Jolanta
    Figueroa, Jonine D.
    Knight, Julia
    Glendon, Gord
    Mulligan, Anna M.
    Dumont, Martine
    Severi, Gianluca
    Baglietto, Laura
    Olson, Janet
    Vachon, Celine
    Purrington, Kristen
    Moisse, Matthieu
    Neven, Patrick
    Wildiers, Hans
    Spurdle, Amanda
    Kosma, Veli-Matti
    Kataja, Vesa
    Hartikainen, Jaana M.
    Hamann, Ute
    Ko, Yon-Dschun
    Dieffenbach, Aida K.
    Arndt, Volker
    Stegmaier, Christa
    Malats, Nuria
    Arias Perez, Jose I.
    Benitez, Javier
    Flyger, Henrik
    Nordestgaard, Borge G.
    Truong, Therese
    Cordina-Duverger, Emilie
    Menegaux, Florence
    GENETIC EPIDEMIOLOGY, 2014, 38 (01) : 84 - 93
  • [38] Using imputed genotype data in the joint score tests for genetic association and gene-environment interactions in case-control studies
    Song, Minsun
    Wheeler, William
    Caporaso, Neil E.
    Landi, Maria Teresa
    Chatterjee, Nilanjan
    GENETIC EPIDEMIOLOGY, 2018, 42 (02) : 146 - 155
  • [39] Challenges in the Use of Literature-based Meta-Analysis to Examine Gene-Environment Interactions
    Palla, Luigi
    Higgins, Julian P. T.
    Wareham, Nicholas J.
    Sharp, Stephen J.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 171 (11) : 1225 - 1232
  • [40] A Penalized Robust Method for Identifying Gene-Environment Interactions
    Shi, Xingjie
    Liu, Jin
    Huang, Jian
    Zhou, Yong
    Xie, Yang
    Ma, Shuangge
    GENETIC EPIDEMIOLOGY, 2014, 38 (03) : 220 - 230