On meta- and mega-analyses for gene-environment interactions

被引:2
作者
Huang, Jing [1 ]
Liu, Yulun [1 ]
Vitale, Steve [1 ]
Penning, Trevor M. [2 ]
Whitehead, Alexander S. [2 ]
Blair, Ian A. [2 ]
Vachani, Anil [3 ]
Clapper, Margie L. [4 ]
Muscat, Joshua E. [5 ]
Lazarus, Philip [6 ]
Scheet, Paul [7 ]
Moore, Jason H. [1 ]
Chen, Yong [1 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] Univ Penn, Ctr Excellence Environm Toxicol, Dept Syst Pharmacol & Translat Therapeut, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Med, Perelman Sch Med, Pulm Allergy & Crit Care Div, Philadelphia, PA 19104 USA
[4] Fox Chase Canc Ctr, Canc Prevent & Control Program, 7701 Burholme Ave, Philadelphia, PA 19111 USA
[5] Penn State Coll Med, Dept Publ Hlth Sci, Hershey, PA USA
[6] Washington State Univ, Dept Pharmaceut Sci, Spokane, WA USA
[7] Univ Texas MD Anderson Canc Ctr, Dept Epidemiol, Houston, TX 77030 USA
关键词
fixed effect model; gene-environment interaction; mega-analysis; meta-analysis; random-effects model; INDIVIDUAL PARTICIPANT DATA; GENOME-WIDE ASSOCIATION; BODY-MASS INDEX; PATIENT DATA; METAANALYSIS; DESIGN; CANCER; LOCI; EFFICIENCY; VARIANTS;
D O I
10.1002/gepi.22085
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gene-by-environment (G x E) interactions are important in explaining the missing heritability and understanding the causation of complex diseases, but a single, moderately sized study often has limited statistical power to detect such interactions. With the increasing need for integrating data and reporting results from multiple collaborative studies or sites, debate over choice between mega- versus meta-analysis continues. In principle, data from different sites can be integrated at the individual level into a mega data set, which can be fit by a joint mega-analysis. Alternatively, analyses can be done at each site, and results across sites can be combined through a meta-analysis procedure without integrating individual level data across sites. Although mega-analysis has been advocated in several recent initiatives, meta-analysis has the advantages of simplicity and feasibility, and has recently led to several important findings in identifying main genetic effects. In this paper, we conducted empirical and simulation studies, using data from a G x E study of lung cancer, to compare the mega- and meta-analyses in four commonly used G x E analyses under the scenario that the number of studies is small and sample sizes of individual studies are relatively large. We compared the two data integration approaches in the context of fixed effect models and random effects models separately. Our investigations provide valuable insights in understanding the differences between mega- and meta-analyses in practice of combining small number of studies in identifying G x E interactions.
引用
收藏
页码:876 / 886
页数:11
相关论文
共 27 条
[1]   Hundreds of variants clustered in genomic loci and biological pathways affect human height [J].
Allen, Hana Lango ;
Estrada, Karol ;
Lettre, Guillaume ;
Berndt, Sonja I. ;
Weedon, Michael N. ;
Rivadeneira, Fernando ;
Willer, Cristen J. ;
Jackson, Anne U. ;
Vedantam, Sailaja ;
Raychaudhuri, Soumya ;
Ferreira, Teresa ;
Wood, Andrew R. ;
Weyant, Robert J. ;
Segre, Ayellet V. ;
Speliotes, Elizabeth K. ;
Wheeler, Eleanor ;
Soranzo, Nicole ;
Park, Ju-Hyun ;
Yang, Jian ;
Gudbjartsson, Daniel ;
Heard-Costa, Nancy L. ;
Randall, Joshua C. ;
Qi, Lu ;
Smith, Albert Vernon ;
Maegi, Reedik ;
Pastinen, Tomi ;
Liang, Liming ;
Heid, Iris M. ;
Luan, Jian'an ;
Thorleifsson, Gudmar ;
Winkler, Thomas W. ;
Goddard, Michael E. ;
Lo, Ken Sin ;
Palmer, Cameron ;
Workalemahu, Tsegaselassie ;
Aulchenko, Yurii S. ;
Johansson, Asa ;
Zillikens, M. Carola ;
Feitosa, Mary F. ;
Esko, Tonu ;
Johnson, Toby ;
Ketkar, Shamika ;
Kraft, Peter ;
Mangino, Massimo ;
Prokopenko, Inga ;
Absher, Devin ;
Albrecht, Eva ;
Ernst, Florian ;
Glazer, Nicole L. ;
Hayward, Caroline .
NATURE, 2010, 467 (7317) :832-838
[2]  
Baldwin Don A, 2013, J Biomol Tech, V24, P198, DOI 10.7171/jbt.13-2404-004
[3]  
Brockton N, 2000, AM J EPIDEMIOL, V151, P846
[4]   Lung cancer risk prediction: A tool for early detection [J].
Cassidy, Adrian ;
Duffy, Stephen W. ;
Myles, Jonathan P. ;
Liloglou, Triantafillos ;
Field, John K. .
INTERNATIONAL JOURNAL OF CANCER, 2007, 120 (01) :1-6
[5]   Identification of seven loci affecting mean telomere length and their association with disease [J].
Codd, Veryan ;
Nelson, Christopher P. ;
Albrecht, Eva ;
Mangino, Massimo ;
Deelen, Joris ;
Buxton, Jessica L. ;
Hottenga, Jouke Jan ;
Fischer, Krista ;
Esko, Tonu ;
Surakka, Ida ;
Broer, Linda ;
Nyholt, Dale R. ;
Leach, Irene Mateo ;
Salo, Perttu ;
Hagg, Sara ;
Matthews, Mary K. ;
Palmen, Jutta ;
Norata, Giuseppe D. ;
O'Reilly, Paul F. ;
Saleheen, Danish ;
Amin, Najaf ;
Balmforth, Anthony J. ;
Beekman, Marian ;
de Boer, Rudolf A. ;
Bohringer, Stefan ;
Braund, Peter S. ;
Burton, Paul R. ;
de Craen, Anton J. M. ;
Denniff, Matthew ;
Dong, Yanbin ;
Douroudis, Konstantinos ;
Dubinina, Elena ;
Eriksson, Johan G. ;
Garlaschelli, Katia ;
Guo, Dehuang ;
Hartikainen, Anna-Liisa ;
Henders, Anjali K. ;
Houwing-Duistermaat, Jeanine J. ;
Kananen, Laura ;
Karssen, Lennart C. ;
Kettunen, Johannes ;
Klopp, Norman ;
Lagou, Vasiliki ;
van Leeuwen, Elisabeth M. ;
Madden, Pamela A. ;
Maegi, Reedik ;
Magnusson, Patrik K. E. ;
Mannisto, Satu ;
McCarthy, Mark I. ;
Medland, Sarah E. .
NATURE GENETICS, 2013, 45 (04) :422-427
[6]   METAANALYSIS IN CLINICAL-TRIALS [J].
DERSIMONIAN, R ;
LAIRD, N .
CONTROLLED CLINICAL TRIALS, 1986, 7 (03) :177-188
[7]   THE CAUSES OF CANCER - QUANTITATIVE ESTIMATES OF AVOIDABLE RISKS OF CANCER IN THE UNITED-STATES TODAY [J].
DOLL, R ;
PETO, R .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1981, 66 (06) :1191-+
[8]   Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk [J].
Ehret, Georg B. ;
Munroe, Patricia B. ;
Rice, Kenneth M. ;
Bochud, Murielle ;
Johnson, Andrew D. ;
Chasman, Daniel I. ;
Smith, Albert V. ;
Tobin, Martin D. ;
Verwoert, Germaine C. ;
Hwang, Shih-Jen ;
Pihur, Vasyl ;
Vollenweider, Peter ;
O'Reilly, Paul F. ;
Amin, Najaf ;
Bragg-Gresham, Jennifer L. ;
Teumer, Alexander ;
Glazer, Nicole L. ;
Launer, Lenore ;
Zhao, Jing Hua ;
Aulchenko, Yurii ;
Heath, Simon ;
Sober, Siim ;
Parsa, Afshin ;
Luan, Jian'an ;
Arora, Pankaj ;
Dehghan, Abbas ;
Zhang, Feng ;
Lucas, Gavin ;
Hicks, Andrew A. ;
Jackson, Anne U. ;
Peden, John F. ;
Tanaka, Toshiko ;
Wild, Sarah H. ;
Rudan, Igor ;
Igl, Wilmar ;
Milaneschi, Yuri ;
Parker, Alex N. ;
Fava, Cristiano ;
Chambers, John C. ;
Fox, Ervin R. ;
Kumari, Meena ;
Go, Min Jin ;
van der Harst, Pim ;
Kao, Wen Hong Linda ;
Sjogren, Marketa ;
Vinay, D. G. ;
Alexander, Myriam ;
Tabara, Yasuharu ;
Shaw-Hawkins, Sue ;
Whincup, Peter H. .
NATURE, 2011, 478 (7367) :103-109
[9]  
Hedges L. V., 2014, STAT METHODS META AN
[10]   Multiple Analytical Approaches Reveal Distinct Gene-Environment Interactions in Smokers and Non Smokers in Lung Cancer [J].
Ihsan, Rakhshan ;
Chauhan, Pradeep Singh ;
Mishra, Ashwani Kumar ;
Yadav, Dhirendra Singh ;
Kaushal, Mishi ;
Sharma, Jagannath Dev ;
Zomawia, Eric ;
Verma, Yogesh ;
Kapur, Sujala ;
Saxena, Sunita .
PLOS ONE, 2011, 6 (12)