LEARNING-BASED LOSSLESS POINT CLOUD GEOMETRY CODING USING SPARSE TENSORS

被引:9
作者
Dat Thanh Nguyen [1 ]
Kaup, Andre [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Chair Multimedia Commun & Signal Proc, Erlangen, Germany
来源
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2022年
关键词
Point Cloud; Sparse Convolution; Deep Learning; G-PCC; VoxelDNN; SparseVoxelDNN;
D O I
10.1109/ICIP46576.2022.9897827
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most point cloud compression methods operate in the voxel or octree domain which is not the original representation of point clouds. Those representations either remove the geometric information or require high computational power for processing. In this paper, we propose a context-based lossless point cloud geometry compression that directly processes the point representation. Operating on a point representation allows us to preserve geometry correlation between points and thus to obtain an accurate context model while significantly reduce the computational cost. Specifically, our method uses a sparse convolution neural network to estimate the voxel occupancy sequentially from the x, y, z input data. Experimental results show that our method outperforms the state-of-the-art geometry compression standard from MPEG with average rate savings of 52% on a diverse set of point clouds from four different datasets.
引用
收藏
页码:2341 / 2345
页数:5
相关论文
共 25 条
[1]  
[Anonymous], 2019, document ISO/IEC JTC1/SC29/WG11 MPEG/N18709
[2]  
[Anonymous], 2019, TISO/IEC JTC1/SC29/WG11 input document m48906
[3]  
[Anonymous], 2018, JTC1SC29WG11 ISOIEC
[4]  
[Anonymous], 2021, P IEEE INT C MULT EX, DOI DOI 10.1109/DSAA53316.2021.9564147
[5]  
[Anonymous], 2018, JTC1SC29WG11 ISOIEC
[6]   4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks [J].
Choy, Christopher ;
Gwak, JunYoung ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3070-3079
[7]  
Deon E., 2017, ISO/ IEC JTC1/ SC29 JointWG11/ WG1 (MPEG/ JPEG) input document WG11M40059 / WG1M74006, 7, 8
[8]  
Garcia DC, 2018, IEEE IMAGE PROC, P1807, DOI 10.1109/ICIP.2018.8451802
[9]  
Garcia DC, 2017, IEEE IMAGE PROC, P1412, DOI 10.1109/ICIP.2017.8296514
[10]  
Guarda AFR, 2020, IEEE IMAGE PROC, P3354, DOI [10.1109/icip40778.2020.9191021, 10.1109/ICIP40778.2020.9191021]