Homothetic packings of centrally symmetric convex bodies

被引:1
作者
Dewar, Sean [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math RICAM, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
Convex body packings; Infinitesimal rigidity; Normed spaces; INFINITESIMAL RIGIDITY;
D O I
10.1007/s10711-022-00675-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A centrally symmetric convex body is a convex compact set with non-empty interior that is symmetric about the origin. Of particular interest are those that are both smooth and strictly convex-known here as regular symmetric bodies-since they retain many of the useful properties of the d-dimensional Euclidean ball. We prove that for any given regular symmetric body C, a homothetic packing of copies of C with randomly chosen radii will have a (2, 2)-sparse planar contact graph. We further prove that there exists a comeagre set of centrally symmetric convex bodies C where any (2, 2)-sparse planar graph can be realised as the contact graph of a stress-free homothetic packing of C.
引用
收藏
页数:34
相关论文
共 36 条
[1]  
Andreev EM., 1970, Math. USSR Sb, V12, P255, DOI DOI 10.1070/SM1970V012N02ABEH000920
[2]  
[Anonymous], 1998, An Introduction to Banach Space Theory, DOI 10.1007/978-1-4612-0603-3
[3]  
[Anonymous], 1992, Basler Lehrbucher
[4]  
[Anonymous], 1993, Encyclopedia of Mathematics and its Applications, DOI DOI 10.1017/CBO9780511526282
[5]   RIGIDITY OF GRAPHS .2. [J].
ASIMOW, L ;
ROTH, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 68 (01) :171-190
[6]   RIGIDITY OF GRAPHS [J].
ASIMOW, L ;
ROTH, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 245 (NOV) :279-289
[7]  
Bonnesen T., 1987, THEORY CONVEX BODIES
[8]   Rigidity for sticky discs [J].
Connelly, Robert ;
Gortler, Steven J. ;
Theran, Louis .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2222)
[9]   Rotation in a normed plane [J].
Cook, Jack ;
Lovett, Jonathan ;
Morgan, Frank .
AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (07) :628-632
[10]  
Danzer L.W., 1962, Math. Z, V79, P95, DOI [10.1007/BF01193107, DOI 10.1007/BF01193107]