Mechanistic insights into the interaction of the MOG1 protein with the cardiac sodium channel Nav1.5 clarify the molecular basis of Brugada syndrome

被引:16
作者
Yu, Gang [1 ,2 ,3 ,4 ]
Liu, Yinan [1 ,2 ]
Qin, Jun [3 ,4 ]
Wang, Zhijie [1 ,2 ,3 ,4 ]
Hu, Yushuang [1 ,2 ]
Wang, Fan [3 ,4 ]
Li, Yabo [3 ,4 ,5 ]
Chakrabarti, Susmita [3 ,4 ]
Chen, Qiuyun [3 ,4 ]
Wang, Qing Kenneth [1 ,2 ,3 ,4 ,6 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, CardioX Ctr, Key Lab Mol Biophys,Minist Educ, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Ctr Human Genome Res, Wuhan 430074, Peoples R China
[3] Case Western Reserve Univ, Cleveland Clin, Dept Mol Cardiol, Ctr Cardiovasc Genet,Lerner Res Inst, Cleveland, OH 44195 USA
[4] Case Western Reserve Univ, Cleveland Clin, Lerner Coll Med, Dept Mol Med, Cleveland, OH 44195 USA
[5] Lanzhou Univ, Coll Life Sci, Lanzhou, Gansu, Peoples R China
[6] Case Western Reserve Univ, Sch Med, Dept Genet & Genome Sci, Cleveland, OH 44106 USA
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
cardiovascular disease; sodium channel; protein-protein interaction; membrane trafficking; molecular modeling; Brugada syndrome (BrS); MOG1; Nav1; 5 sodium channel; SCN5A; trafficking; genetic disorder; cardiac disease; arrhythmia; myocardial ischemia; SCN5A MUTATION; RAN; IDENTIFICATION; GENE; SUSCEPTIBILITY; BINDING; DEATH; N1325S;
D O I
10.1074/jbc.RA118.003997
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Na(v)1.5 is the -subunit of the cardiac sodium channel complex. Abnormal expression of Na(v)1.5 on the cell surface because of mutations that disrupt Na(v)1.5 trafficking causes Brugada syndrome (BrS), sick sinus syndrome (SSS), cardiac conduction disease, dilated cardiomyopathy, and sudden infant death syndrome. We and others previously reported that Ran-binding protein MOG1 (MOG1), a small protein that interacts with Na(v)1.5, promotes Na(v)1.5 intracellular trafficking to plasma membranes and that a substitution in MOG1, E83D, causes BrS. However, the molecular basis for the MOG1/Nav1.5 interaction and how the E83D substitution causes BrS remains unknown. Here, we assessed the effects of defined MOG1 deletions and alanine-scanning substitutions on MOG1's interaction with Na(v)1.5. Large deletion analysis mapped the MOG1 domain required for the interaction with Na(v)1.5 to the region spanning amino acids 146-174, and a refined deletion analysis further narrowed this domain to amino acids 146-155. Site-directed mutagenesis further revealed that Asp-148, Arg-150, and Ser-151 cluster in a peptide loop essential for binding to Na(v)1.5. GST pulldown and electrophysiological analyses disclosed that the substitutions E83D, D148Q, R150Q, and S151Q disrupt MOG1's interaction with Na(v)1.5 and significantly reduce its trafficking to the cell surface. Examination of MOG1's 3D structure revealed that Glu-83 and the loop containing Asp-148, Arg-150, and Ser-151 are spatially proximal, suggesting that these residues form a critical binding site for Na(v)1.5. In conclusion, our findings identify the structural elements in MOG1 that are crucial for its interaction with Na(v)1.5 and improve our understanding of how the E83D substitution causes BrS.
引用
收藏
页码:18207 / 18217
页数:11
相关论文
共 26 条
  • [1] Interaction between Ran and Mog1 is required for efficient nuclear protein import.
    Baker, RP
    Harreman, MT
    Eccleston, JF
    Corbett, AH
    Stewart, M
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (44) : 41255 - 41262
  • [2] Crystallization and preliminary X-ray diffraction analysis of the Saccharomyces cerevisiae Ran-binding protein Mog1p
    Baker, RP
    Stewart, M
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2000, 56 : 229 - 231
  • [3] Mitosis-specific acetylation tunes Ran effector binding for chromosome segregation
    Bao, Xiaoling
    Liu, Heng
    Liu, Xing
    Ruan, Ke
    Zhang, Yonghui
    Zhang, Zhiyong
    Hu, Qi
    Liu, Ying
    Akram, Saima
    Zhang, Jiahai
    Gong, Qingguo
    Wang, Wenwen
    Yuan, Xiao
    Li, Jian
    Zhao, Lingli
    Dou, Zhen
    Tian, Ruijun
    Yao, Xuebiao
    Wu, Jihui
    Shi, Yunyu
    [J]. JOURNAL OF MOLECULAR CELL BIOLOGY, 2018, 10 (01) : 18 - 32
  • [4] Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways
    Benson, DW
    Silberbach, GM
    Kavanaugh-McHugh, A
    Cottrill, C
    Zhang, YZ
    Riggs, S
    Smalls, O
    Johnson, MC
    Watson, MS
    Seidman, JG
    Seidman, CE
    Plowden, J
    Kugler, JD
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (11) : 1567 - 1573
  • [5] MOG1 Rescues Defective Trafficking of Nav1.5 Mutations in Brugada Syndrome and Sick Sinus Syndrome
    Chakrabarti, Susmita
    Wu, Xiaofen
    Yang, Zhaogang
    Wu, Ling
    Yong, Sandro L.
    Zhang, Cuntai
    Hu, Keli
    Wang, Qing K.
    Chen, Qiuyun
    [J]. CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2013, 6 (02) : 392 - 401
  • [6] Genetic basis and molecular mechanism for idiopathic: ventricular fibrillation
    Chen, QY
    Kirsch, GE
    Zhang, DM
    Brugada, R
    Brugada, J
    Brugada, P
    Potenza, D
    Moya, A
    Borggrefe, M
    Breithardt, G
    Ortiz-Lopez, R
    Wang, Z
    Antzelevitch, C
    O'Brien, RE
    Schulze-Bahr, E
    Keating, MT
    Towbin, JA
    Wang, Q
    [J]. NATURE, 1998, 392 (6673) : 293 - 296
  • [7] PRIMARY STRUCTURE AND FUNCTIONAL EXPRESSION OF THE HUMAN CARDIAC TETRODOTOXIN-INSENSITIVE VOLTAGE-DEPENDENT SODIUM-CHANNEL
    GELLENS, ME
    GEORGE, AL
    CHEN, LQ
    CHAHINE, M
    HORN, R
    BARCHI, RL
    KALLEN, RG
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (02) : 554 - 558
  • [8] Multiple Loss-of-Function Mechanisms Contribute to SCN5A-Related Familial Sick Sinus Syndrome
    Gui, Junhong
    Wang, Tao
    Jones, Richard P. O.
    Trump, Dorothy
    Zimmer, Thomas
    Lei, Ming
    [J]. PLOS ONE, 2010, 5 (06):
  • [9] MOG1 A New Susceptibility Gene for Brugada Syndrome
    Kattygnarath, Darouna
    Maugenre, Svetlana
    Neyroud, Nathalie
    Balse, Elise
    Ichai, Carole
    Denjoy, Isabelle
    Dilanian, Gilles
    Martins, Raphael P.
    Fressart, Veronique
    Berthet, Myriam
    Schott, Jean Jacques
    Leenhardt, Antoine
    Probst, Vincent
    Le Marec, Herve
    Hainque, Bernard
    Coulombe, Alain
    Hatem, Stephane N.
    Guicheney, Pascale
    [J]. CIRCULATION-CARDIOVASCULAR GENETICS, 2011, 4 (03) : 261 - 268
  • [10] Identification and characterization of the human MOG1 gene
    Marfatia, KA
    Harreman, MT
    Fanara, P
    Vertino, PM
    Corbett, AH
    [J]. GENE, 2001, 266 (1-2) : 45 - 56