Graph Neural Network with RNNs based trajectory prediction of dynamic agents for autonomous vehicle

被引:15
|
作者
Singh, Divya [1 ]
Srivastava, Rajeev [1 ]
机构
[1] Banaras Hindu Univ, Dept Comp Sci & Engn, Indian Inst Technol, Varanasi 221005, Uttar Pradesh, India
关键词
Trajectory prediction; Autonomous vehicles; Graph neural network; Recurrent neural network; LOCATIONS;
D O I
10.1007/s10489-021-03120-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trajectory prediction is an essential ability for the intelligent transportation system to navigate through complex traffic scenes. In recent times, trajectory prediction has become an important task, especially in crowded scenes, because of the great demands of emerging artificial intelligence applications like service bots and autonomous cars. As autonomous vehicles travel in interactive and highly uncertain environments shared with other dynamic road agents like other vehicles or pedestrians, predicting the trajectories of the surrounding agents is essential for an autonomous driving system (ADS) to plan safe motion, fast reaction time and comfortable maneuvers. The trajectory for each dynamic object (or road agent) is described as a sequence of states within a time interval, with each state representing the object's spatial coordinates under the world coordinate frame. In the trajectory prediction (TP) problem, given the trajectory of each object between intervals of time, we predict their trajectories between these intervals of time. We plan to design a Multi-Scale Graph Neural Network (GNN) with temporal features architecture for this prediction problem. Experiments show that our model effectively captures comprehensive Spatio-temporal correlations through modeling GNN with temporal features for TP and consistently surpasses the existing state-of-the-art methods on three real-world datasets for trajectory. Compared to prior methods, our model's performance is more for the sparse datasets than for the dense datasets.
引用
收藏
页码:12801 / 12816
页数:16
相关论文
共 50 条
  • [1] Graph Neural Network with RNNs based trajectory prediction of dynamic agents for autonomous vehicle
    Divya Singh
    Rajeev Srivastava
    Applied Intelligence, 2022, 52 : 12801 - 12816
  • [2] Vehicle Trajectory Prediction Based on Dynamic Graph Neural Network
    Cai, Jijing
    Zhu, Han
    Feng, Hailin
    Wen, Long
    Wang, Wei
    Lv, Meilei
    Fang, Kai
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 67 - 72
  • [3] Vehicle Interactive Dynamic Graph Neural Network-Based Trajectory Prediction for Internet of Vehicles
    Yang, Mingxia
    Zhang, Boliang
    Wang, Tingting
    Cai, Jijing
    Weng, Xiang
    Feng, Hailin
    Fang, Kai
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (22): : 35777 - 35790
  • [4] Multidimensional Trajectory Prediction of UAV Swarms Based on Dynamic Graph Neural Network
    An, Yu
    Liu, Ao
    Liu, Hao
    Geng, Liang
    IEEE ACCESS, 2024, 12 : 57033 - 57042
  • [5] Graph and Recurrent Neural Network-based Vehicle Trajectory Prediction For Highway Driving
    Mo, Xiaoyu
    Xing, Yang
    Lv, Chen
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 1934 - 1939
  • [6] A Multidimensional Graph Fourier Transformation Neural Network for Vehicle Trajectory Prediction
    Neumeier, Marion
    Tollkuhn, Andreas
    Botsch, Michael
    Utschick, Wolfgang
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 687 - 694
  • [7] Graph-Based Spatial-Temporal Convolutional Network for Vehicle Trajectory Prediction in Autonomous Driving
    Sheng, Zihao
    Xu, Yunwen
    Xue, Shibei
    Li, Dewei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 17654 - 17665
  • [8] Electric Vehicle Charging Load Prediction Based on Dynamic Adaptive Graph Neural Network
    Zhang Y.
    Zhang Z.
    Liu C.
    Zhang X.
    Zhou Y.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (07): : 86 - 93
  • [9] Vehicle Trajectory Prediction Method Based on Graph Convolutional Interaction Network
    Wang, Mengxi
    Cai, Yingfeng
    Wang, Hai
    Rao, Zhongyu
    Chen, Long
    Li, Yicheng
    Qiche Gongcheng/Automotive Engineering, 2024, 46 (10):
  • [10] LSTM-based graph attention network for vehicle trajectory prediction
    Wang, Jiaqin
    Liu, Kai
    Li, Hantao
    COMPUTER NETWORKS, 2024, 248