FURTHER CONVERGENCE ANALYSIS OF ITERATIVE METHODS FOR GENERALIZED SPLIT FEASIBILITY PROBLEMS IN HILBERT SPACES

被引:0
作者
Li, Lulu [1 ]
Xu, Hong-Kun [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Peoples R China
关键词
Split feasibility problem; fixed point; nonexpansive mapping; maximal monotone operator; iterative method; VISCOSITY APPROXIMATION METHODS; FIXED-POINT THEOREMS; NONEXPANSIVE-MAPPINGS; NONLINEAR MAPPINGS; ALGORITHMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We further study convergence analysis of the iterative algorithms proposed in [33] for the generalized split feasibility problem. Weak convergence results under more relaxed conditions are obtained. Regularization is introduced to obtain strong convergence of the viscosity approximation method.
引用
收藏
页码:2575 / 2589
页数:15
相关论文
共 40 条
[1]   Viscosity solutions of minimization problems [J].
Attouch, H .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (03) :769-806
[2]  
Barbu, 1976, NONLINEAR SEMIGROUPS
[3]  
Blum E., 1994, Math. student, V63, P123
[4]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[5]  
Byrne C, 2012, J NONLINEAR CONVEX A, V13, P759
[6]  
Censor Y., 1994, Numer. Algorithms, V8, P221, DOI DOI 10.1007/BF02142692
[7]  
Censor Y, 2009, J CONVEX ANAL, V16, P587
[8]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[9]   Signal recovery by proximal forward-backward splitting [J].
Combettes, PL ;
Wajs, VR .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1168-1200
[10]  
Cui HH, 2013, J NONLINEAR CONVEX A, V14, P245