Origami embedding of piecewise-linear two-manifolds

被引:1
作者
Berni, Marshall [1 ]
Hayes, Barry [2 ]
机构
[1] Palo Alto Res Ctr, 3333 Coyote Hill Rd, Palo Alto, CA 94304 USA
[2] Google Inc, Mountain View, CA 94043 USA
来源
LATIN 2008: THEORETICAL INFORMATICS | 2008年 / 4957卷
关键词
D O I
10.1007/978-3-540-78773-0_53
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that any compact, orientable, piecewise-linear two-manifold with Euclidean metric can be realized as a flat origami, meaning a set of non-crossing polygons in Euclidean 2-space "plus layers". This result implies a weak form of a theorem of Burago and Zalgaller: any orientable, piecewise-linear two-manifold can be embedded into Euclidean 3-space "nearly" isometrically. We also correct a mistake in our previously published construction for cutting any polygon out of a folded sheet of paper with one straight cut.
引用
收藏
页码:617 / +
页数:3
相关论文
共 19 条
[1]  
Bern M, 1996, PROCEEDINGS OF THE SEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P175
[2]   LINEAR-SIZE NONOBTUSE TRIANGULATION OF POLYGONS [J].
BERN, M ;
MITCHELL, S ;
RUPPERT, J .
DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 14 (04) :411-428
[3]  
Bern Marshall, 1998, PRESCRIPTION CUSTOM
[4]  
Burago YD., 1960, Vestnik Leningrad. Univ, V15, P66
[5]  
BURAGO YD, 1996, ST PETERSB MATH J, V7, P369
[6]  
CONNELLY R, 1978, MATH INTELL, V1, P130, DOI 10.1007/BF03023258
[7]   The Bellows conjecture - Finding exceptions to an "inflexible" rule of geometry. [J].
Stewart, I .
SCIENTIFIC AMERICAN, 1998, 279 (01) :110-111
[8]  
DEMAINE E, 2001, UNPUB FLATTENING POL
[9]  
Demaine ED, 2007, GEOMETRIC FOLDING AL
[10]  
ERICKSON J, 2002, OPTIMALLY CUTTING SU