Symmetries of the 2D magnetic particle imaging system matrix

被引:10
作者
Weber, A. [1 ]
Knopp, T. [2 ,3 ]
机构
[1] Bruker Biospin MRI, D-76275 Ettlingen, Germany
[2] Univ Med Ctr Hamburg Eppendorf, Sect Biomed Imaging, D-20246 Hamburg, Germany
[3] Hamburg Univ Technol, Inst Biomed Imaging, D-21073 Hamburg, Germany
关键词
magnetic particle imaging; system matrix; symmetry; RECONSTRUCTION;
D O I
10.1088/0031-9155/60/10/4033
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In magnetic particle imaging (MPI), the relation between the particle distribution and the measurement signal can be described by a linear system of equations. For 1D imaging, it can be shown that the system matrix can be expressed as a product of a convolution matrix and a Chebyshev transformation matrix. For multidimensional imaging, the structure of the MPI system matrix is not yet fully explored as the sampling trajectory complicates the physical model. It has been experimentally found that the MPI system matrix rows have symmetries and look similar to the tensor products of Chebyshev polynomials. In this work we will mathematically prove that the 2D MPI system matrix has symmetries that can be used for matrix compression.
引用
收藏
页码:4033 / 4044
页数:12
相关论文
共 16 条
[1]   Optimization of nanoparticle core size for magnetic particle imaging [J].
Ferguson, R. Matthew ;
Minard, Kevin R. ;
Krishnan, Kannan M. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (10) :1548-1551
[2]   Tomographic imaging using the nonlinear response of magnetic particles [J].
Gleich, B ;
Weizenecker, R .
NATURE, 2005, 435 (7046) :1214-1217
[3]   Multidimensional X-Space Magnetic Particle Imaging [J].
Goodwill, Patrick W. ;
Conolly, Steven M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (09) :1581-1590
[4]   The X-Space Formulation of the Magnetic Particle Imaging Process: 1-D Signal, Resolution, Bandwidth, SNR, SAR, and Magnetostimulation [J].
Goodwill, Patrick W. ;
Conolly, Steven M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (11) :1851-1859
[5]   Weighted iterative reconstruction for magnetic particle imaging [J].
Knopp, T. ;
Rahmer, J. ;
Sattel, T. F. ;
Biederer, S. ;
Weizenecker, J. ;
Gleich, B. ;
Borgert, J. ;
Buzug, T. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (06) :1577-1589
[6]  
Knopp T., 2012, MAGNETIC PARTICLE IM, DOI DOI 10.4236/OJMI.2016.61001
[7]   Sparse Reconstruction of the Magnetic Particle Imaging System Matrix [J].
Knopp, Tobias ;
Weber, Alexander .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (08) :1473-1480
[8]   2D model-based reconstruction for magnetic particle imaging [J].
Knopp, Tobias ;
Biederer, Sven ;
Sattel, Timo F. ;
Rahmer, Juergen ;
Weizenecker, Juergen ;
Gleich, Bernhard ;
Borgert, Joern ;
Buzug, Thorsten M. .
MEDICAL PHYSICS, 2010, 37 (02) :485-491
[9]   Model-Based Reconstruction for Magnetic Particle Imaging [J].
Knopp, Tobias ;
Sattel, Timo F. ;
Biederer, Sven ;
Rahmer, Juergen ;
Weizenecker, Juergen ;
Gleich, Bernhard ;
Borgert, Joern ;
Buzug, Thorsten M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (01) :12-18
[10]   Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy [J].
Krishnan, Kannan M. .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (07) :2523-2558