Prognosis Prediction of Breast Cancer Based on CGAN

被引:0
作者
Liu, Xi [1 ]
Zhao, Runan [1 ]
Zhang, Yingqi [1 ]
Zhang, Fan [1 ]
机构
[1] Henan Univ, Sch Comp & Informat Engn, Kaifeng 475004, Peoples R China
来源
WEB INFORMATION SYSTEMS AND APPLICATIONS (WISA 2021) | 2021年 / 12999卷
关键词
Breast cancer; Prognosis; CGAN; Cox proportional hazards model;
D O I
10.1007/978-3-030-87571-8_16
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Breast cancer is the malignancy with the highest morbidity and mortality rate in women worldwide, and prognosis prediction of breast cancer is of great practical importance for both patients and clinical practitioners. In this paper, we use a modified Conditional Generative Adversarial Networks (CGAN) to train the generators in a GAN into a predictive model that can perform prognosis of breast cancer on clinical data from patients and compare it with a multi-factor Cox proportional hazards model. In this paper, the accuracy of the prognostic model using CGAN was 0.950 with an AUC of 0.915; the AUC value of prognosis obtained using the multi-factor Cox proportional hazards model was 0.837. The experimental results demonstrated that the breast prognostic model based on CGAN can more accurately quantify and assess the prognosis of patients.
引用
收藏
页码:190 / 197
页数:8
相关论文
共 13 条
  • [1] Du Jing, 2020, Computer Engineering and Applications, V56, P146, DOI 10.3778/j.issn.1002-8331.1811-0086
  • [2] Goodfellow I., 2020, ADV NEUR IN, V63, P139, DOI [DOI 10.1145/3422622, 10.1145/3422622]
  • [3] Survival prediction in terminally ill cancer patients by clinical estimates, laboratory tests, and self-rated anxiety and depression
    Gripp, Stephan
    Moeller, Sibylle
    Boelke, Edwin
    Schmitt, Gerd
    Matuschek, Christiane
    Asgari, Sonja
    Asgharzadeh, Farzin
    Roth, Stephan
    Budach, Wilfried
    Franz, Matthias
    Willers, Reinhardt
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (22) : 3313 - 3320
  • [4] Cox regression analysis with missing covariates via nonparametric multiple imputation
    Hsu, Chiu-Hsieh
    Yu, Mandi
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (06) : 1676 - 1688
  • [5] Expert system based on neuro-fuzzy rules for diagnosis breast cancer
    Keles, Ali
    Keles, Ayturk
    Yavuz, Ugur
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (05) : 5719 - 5726
  • [6] Comprehensive molecular portraits of human breast tumours
    Koboldt, Daniel C.
    Fulton, Robert S.
    McLellan, Michael D.
    Schmidt, Heather
    Kalicki-Veizer, Joelle
    McMichael, Joshua F.
    Fulton, Lucinda L.
    Dooling, David J.
    Ding, Li
    Mardis, Elaine R.
    Wilson, Richard K.
    Ally, Adrian
    Balasundaram, Miruna
    Butterfield, Yaron S. N.
    Carlsen, Rebecca
    Carter, Candace
    Chu, Andy
    Chuah, Eric
    Chun, Hye-Jung E.
    Coope, Robin J. N.
    Dhalla, Noreen
    Guin, Ranabir
    Hirst, Carrie
    Hirst, Martin
    Holt, Robert A.
    Lee, Darlene
    Li, Haiyan I.
    Mayo, Michael
    Moore, Richard A.
    Mungall, Andrew J.
    Pleasance, Erin
    Robertson, A. Gordon
    Schein, Jacqueline E.
    Shafiei, Arash
    Sipahimalani, Payal
    Slobodan, Jared R.
    Stoll, Dominik
    Tam, Angela
    Thiessen, Nina
    Varhol, Richard J.
    Wye, Natasja
    Zeng, Thomas
    Zhao, Yongjun
    Birol, Inanc
    Jones, Steven J. M.
    Marra, Marco A.
    Cherniack, Andrew D.
    Saksena, Gordon
    Onofrio, Robert C.
    Pho, Nam H.
    [J]. NATURE, 2012, 490 (7418) : 61 - 70
  • [7] Detection of gearbox failures by combined acoustic emission and vibration sensing in rotating machinery
    Rafael, S.
    Romero, A.
    Soua, S.
    Gan, T-H
    Neasham, J.
    Goodfellow, G.
    [J]. INSIGHT, 2014, 56 (08) : 422 - 425
  • [8] Regression shrinkage and selection via the lasso: a retrospective
    Tibshirani, Robert
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 273 - 282
  • [9] Wang L., 2018, STAT APPL, V7, P99
  • [10] Xiaoqing S, 2021, J DALIAN MED U, V43, P29