Construction of Diversified Ion Channels in Lithium-Ion Battery Separator Using Polybenzimidazole and Ion-Modified Metal- Organic Framework

被引:15
作者
Min, Yu [1 ]
Liu, Xiaoting [1 ]
Guo, Li [1 ]
Wu, Aogui [1 ]
Xian, Dongxia [1 ]
Zhang, Bin [2 ]
Wang, Lei [1 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen Key Lab Polymer Sci & Technol, Shenzhen 518060, Peoples R China
[2] Shenzhen Acad Metrol & Qual Inspection, Elect & Elect Inspection Div, Shenzhen 518060, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2022年 / 5卷 / 07期
基金
中国国家自然科学基金;
关键词
  lithium-ion battery; lithium-ion transfer e ffi ciency; polybenzimidazole; ion-modi fi ed metal; organic framework; hybrid separator; ETHER KETONE) SEPARATOR; ELECTROCHEMICAL PROPERTIES; POLYPROPYLENE SEPARATOR; GEL ELECTROLYTE; MEMBRANES; PERFORMANCE; HYBRID; SAFETY; SIZE;
D O I
10.1021/acsaem.2c01684
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
ABSTRACT: The preparation of separators using heat-resistant polymers is an effective approach to improve the safety of lithium-ion batteries (LIBs). However, separators using a single heat-resistant polymer compared with the composite modified polymer have low conductivities, which leads to low battery performances. In this study, for the first time, a heat-resistant separator was successfully prepared using an ion-modified metal-organic framework (MOF) and poly(aryl ether benzimidazole)(OPBI). Diversified ion channels were constructed by ion modification combined with phase inversion and physical mixing. The lithium-ion transmission efficiency and safety of the LIBs were effectively improved. The hybrid separator exhibited a satisfactory thermal stability (absence of shrinkage at 200 degrees C for 1 h), higher ionic conductivity (1.46 mS cm-1), and better electrolyte uptake rate. Moreover, the hybrid separator is conducive to inhibiting the growth of Li dendrites. A cell assembled with the hybrid separator delivered a reversible capacity of 157 mA h g-1 at 0.5 C. The capacity retention of the cell was up to 94% after 200 cycles. Thus, the hybrid membrane is a valuable candidate to enhance the safety and electrochemical properties of LIBs.
引用
收藏
页码:9131 / 9140
页数:10
相关论文
共 50 条
  • [31] A Metal-Organic Framework-Modified Single-Ion Conducting Solid Polymer Electrolyte for Lithium-Ion Batteries
    Liu, Qiang
    Wang, Haihua
    Liu, Xuan
    Liu, Lijian
    Niu, Huizhu
    Sun, Liyu
    Cao, Rui
    Wang, Dong
    Kang, Yong-Mook
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (14): : 8008 - 8016
  • [32] Cooling of lithium-ion battery pack using different configurations of flexible baffled channels
    Lazim, Adam Adil
    Ismael, Muneer A.
    HEAT TRANSFER, 2024, 53 (03) : 1267 - 1291
  • [33] Zeolitic imidazolate framework-67 based separator for enhanced high thermal stability of lithium ion battery
    Chen, Pan
    Shen, Jianxing
    Wang, Tailin
    Dai, Meng
    Si, Conghui
    Xie, Jixun
    Li, Min
    Cong, Xiaotong
    Sun, Xiao
    JOURNAL OF POWER SOURCES, 2018, 400 : 325 - 332
  • [34] Copper/cobalt metal-organic framework composites for advanced anode material of lithium-ion battery
    Du, Xuan
    Xu, Guiying
    Zhu, Chengyao
    Zhou, Tao
    Shi, Peng
    Gao, Guo
    JOURNAL OF ENERGY STORAGE, 2024, 89
  • [35] Epitaxial Metal-Organic Framework for Stabilizing the Formation of a Solid Electrolyte Interphase on the Si Anode of a Lithium-Ion Battery
    Shin, Jaewook
    Kim, Tae-Hee
    Kang, Hyeonmuk
    Cho, EunAe
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (32) : 10615 - 10626
  • [36] Electrospun organically modified sepiolite/PVDF coating on polypropylene separator to improve electrochemical performance of lithium-ion battery
    Sun, Xianli
    Xu, Jiahao
    Zhi, Xiaoke
    Zhang, Jingpeng
    Hou, Kangwei
    Bian, Yuhan
    Li, Xiaolin
    Wang, Li
    Liang, Guangchuan
    EXPRESS POLYMER LETTERS, 2024, 18 (06): : 575 - 591
  • [37] A polytriphenylamine-modified separator with reversible overcharge protection for 3.6 V-class lithium-ion battery
    Li, S. L.
    Ai, X. P.
    Yang, H. X.
    Cao, Y. L.
    JOURNAL OF POWER SOURCES, 2009, 189 (01) : 771 - 774
  • [38] Performance Predictors for Organic Cathodes of Lithium-Ion Battery
    Sakano, Kosuke
    Igarashi, Yasuhiko
    Imai, Hiroaki
    Miyakawa, Shuntaro
    Saito, Takaya
    Takayanagi, Yoshiki
    Nishiyama, Koji
    Oaki, Yuya
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (02) : 2074 - 2082
  • [39] MOFite: A High-Density Lithiophilic and Scalable Metal-Organic Framework Anode for Rechargeable Lithium-Ion Battery
    Gaber, Safa
    Mohammed, Abdul Khayum
    Javaregowda, Bharathkumar H.
    Martinez, Jose Ignacio
    Sanchez, Pilar Pena
    Gandara, Felipe
    Krishnamoorthy, Kothandam
    Shetty, Dinesh
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (44)
  • [40] Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery
    Lin, Chun-Er
    Zhang, Hong
    Song, You-Zhi
    Zhang, Yin
    Yuan, Jia-Jia
    Zhu, Bao-Ku
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (03) : 991 - 998