On Weak and Viscosity Solutions of Nonlocal Double Phase Equations

被引:17
作者
Fang, Yuzhou [1 ]
Zhang, Chao [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
FRACTIONAL P-LAPLACIAN; HOLDER REGULARITY; MINIMIZERS;
D O I
10.1093/imrn/rnab351
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the nonlocal double phase equation P.V. integral(Rn) vertical bar u(x) - u(Y)(p-2)(u(x)) - u(y))K-sp(X,Y)dY + P.V. integral(Rn) a(x,y)vertical bar u(x) - u(Y)vertical bar(q-2)(u(X) - u(Y))K-tq(X,Y) dY = 0 where 1 < p <= q and the modulating coefficient a(. , .) >= 0. Under some suitable hypotheses, we first use the De Giorgi-Nash-Moser methods to derive the local Holder continuity for bounded weak solutions and then establish the relationship between weak solutions and viscosity solutions to such equations.
引用
收藏
页码:3746 / 3789
页数:44
相关论文
共 50 条
  • [41] Holder Estimates in Space-Time for Viscosity Solutions of Hamilton-Jacobi Equations
    Cannarsa, Piermarco
    Cardaliaguet, Pierre
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (05) : 590 - 629
  • [42] Weak solvability for a class of double phase variable exponents inclusion problems
    Cen, Jinxia
    Costea, Nicusor
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 144
  • [43] SYMMETRY OF INTRINSICALLY SINGULAR SOLUTIONS OF DOUBLE PHASE PROBLEMS
    Biagi, Stefano
    Esposito, Francesco
    Vecchi, Eugenio
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2023, 36 (3-4) : 229 - 246
  • [44] ELLIPTIC SYSTEMS WITH BOUNDED SOLUTIONS AND DOUBLE PHASE FUNCTIONALS
    Leonetti, Francesco
    [J]. BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2024, 15 (01) : 138 - 163
  • [45] Three ground state solutions for double phase problem
    Liu, Wulong
    Dai, Guowei
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (12)
  • [46] Regularity Theory for Nonlocal Equations with General Growth in the Heisenberg Group
    Fang, Yuzhou
    Zhang, Chao
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (12) : 9962 - 9990
  • [47] Existence and Non-existence of Global Solutions for a Nonlocal Choquard-Kirchhoff Diffusion Equations in R
    Boudjeriou, Tahir
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1) : S695 - S732
  • [48] Regularity results for nonlocal parabolic equations
    Kassmann, Moritz
    Schwab, Russell W.
    [J]. RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2014, 5 (01): : 183 - 212
  • [49] Existence of ground state solutions for a Choquard double phase problem
    Arora, Rakesh
    Fiscella, Alessio
    Mukherjee, Tuhina
    Winkert, Patrick
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 73
  • [50] Fractional double-phase patterns: concentration and multiplicity of solutions
    Ambrosio, Vincenzo
    Radulescu, Vicentiu D.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 : 101 - 145