On Weak and Viscosity Solutions of Nonlocal Double Phase Equations

被引:18
作者
Fang, Yuzhou [1 ]
Zhang, Chao [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
FRACTIONAL P-LAPLACIAN; HOLDER REGULARITY; MINIMIZERS;
D O I
10.1093/imrn/rnab351
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the nonlocal double phase equation P.V. integral(Rn) vertical bar u(x) - u(Y)(p-2)(u(x)) - u(y))K-sp(X,Y)dY + P.V. integral(Rn) a(x,y)vertical bar u(x) - u(Y)vertical bar(q-2)(u(X) - u(Y))K-tq(X,Y) dY = 0 where 1 < p <= q and the modulating coefficient a(. , .) >= 0. Under some suitable hypotheses, we first use the De Giorgi-Nash-Moser methods to derive the local Holder continuity for bounded weak solutions and then establish the relationship between weak solutions and viscosity solutions to such equations.
引用
收藏
页码:3746 / 3789
页数:44
相关论文
共 41 条
[1]  
Baasandorj S., 2021, GRADIENT ESTIMATES M, V60, P48
[2]   Calderon-Zygmund estimates for generalized double phase problems [J].
Baasandorj, Sumiya ;
Byun, Sun-Sig ;
Oh, Jehan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)
[3]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[4]   Equivalence of weak and viscosity solutions in fractional non-homogeneous problems [J].
Barrios, Begona ;
Medina, Maria .
MATHEMATISCHE ANNALEN, 2021, 381 (3-4) :1979-2012
[5]   Higher Holder regularity for the fractional p-Laplacian in the superquadratic case [J].
Brasco, Lorenzo ;
Lindgren, Erik ;
Schikorra, Armin .
ADVANCES IN MATHEMATICS, 2018, 338 :782-846
[6]   Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case [J].
Brasco, Lorenzo ;
Lindgren, Erik .
ADVANCES IN MATHEMATICS, 2017, 304 :300-354
[7]   The second eigenvalue of the fractional p-Laplacian [J].
Brasco, Lorenzo ;
Parini, Enea .
ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) :323-355
[8]   Global gradient estimates for non-uniformly elliptic equations [J].
Byun, Sun-Sig ;
Oh, Jehan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
[9]   Maximum principles for the fractional p-Laplacian and symmetry of solutions [J].
Chen, Wenxiong ;
Li, Congming .
ADVANCES IN MATHEMATICS, 2018, 335 :735-758
[10]   Generalized Superharmonic Functions with Strongly Nonlinear Operator [J].
Chlebicka, Iwona ;
Zatorska-Goldstein, Anna .
POTENTIAL ANALYSIS, 2022, 57 (03) :379-400