Precision benchmark calculations for four particles at unitarity

被引:19
作者
Bour, Shahin [1 ,2 ]
Li, Xin [3 ]
Lee, Dean [3 ]
Meissner, Ulf-G. [1 ,2 ,4 ,5 ]
Mitas, Lubos [3 ]
机构
[1] Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theorie, D-53115 Bonn, Germany
[2] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany
[3] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[4] Forschungszentrum Julich, Inst Adv Simulat IAS 4, Inst Kernphys IKP 3, D-52425 Julich, Germany
[5] Forschungszentrum Julich, Julich Ctr Hadron Phys, D-52425 Julich, Germany
关键词
QUANTUM MONTE-CARLO; NUMERICAL-SIMULATION; WAVE-FUNCTIONS; FERMION GAS; ALGORITHMS; ENERGY;
D O I
10.1103/PhysRevA.83.063619
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The unitarity limit describes interacting particles where the range of the interaction is zero and the scattering length is infinite. We present precision benchmark calculations for two-component fermions at unitarity using three different ab initio methods: Hamiltonian lattice formalism using iterated eigenvector methods, Euclidean lattice formalism with auxiliary-field projection Monte Carlo methods, and continuum diffusion Monte Carlo methods with fixed and released nodes. We have calculated the ground-state energy of the unpolarized four-particle system in a periodic cube as a dimensionless fraction of the ground-state energy for the noninteracting system. We obtain values of 0.211(2) and 0.210(2) using two different Hamiltonian lattice representations, 0.206(9) using Euclidean lattice formalism, and an upper bound of 0.212(2) from fixed-node diffusion Monte Carlo methods. Released-node calculations starting from the fixed-node result yield a decrease of less than 0.002 over a propagation of 0.4E(F)(-1) in Euclidean time, where E-F is the Fermi energy. We find good agreement among all three ab initio methods.
引用
收藏
页数:9
相关论文
共 77 条
[1]   From low-density neutron matter to the unitary limit [J].
Abe, T. ;
Seki, R. .
PHYSICAL REVIEW C, 2009, 79 (05)
[2]   Lattice calculation of thermal properties of low-density neutron matter with pionless NN effective field theory [J].
Abe, T. ;
Seki, R. .
PHYSICAL REVIEW C, 2009, 79 (05)
[3]   Pairing and superfluid properties of dilute fermion gases at unitarity [J].
Akkineni, Vamsi K. ;
Ceperley, D. M. ;
Trivedi, Nandini .
PHYSICAL REVIEW B, 2007, 76 (16)
[4]   Next-to-next-to-leading-order ε expansion for a Fermi gas at infinite scattering length [J].
Arnold, Peter ;
Drut, Joaquin E. ;
Son, Dam Thanh .
PHYSICAL REVIEW A, 2007, 75 (04)
[5]   Equation of state of a Fermi gas in the BEC-BCS crossover: A quantum Monte Carlo study [J].
Astrakharchik, GE ;
Boronat, J ;
Casulleras, J ;
Giorgini, S .
PHYSICAL REVIEW LETTERS, 2004, 93 (20) :200404-1
[6]   ELECTRONIC STRUCTURE QUANTUM MONTE CARLO [J].
Bajdich, Michal ;
Mitas, Lubos .
ACTA PHYSICA SLOVACA, 2009, 59 (02) :81-168
[7]   Neutron matter model [J].
Baker, GA .
PHYSICAL REVIEW C, 1999, 60 (05) :6
[8]   Crossover from a molecular Bose-Einstein condensate to a degenerate Fermi gas [J].
Bartenstein, M ;
Altmeyer, A ;
Riedl, S ;
Jochim, S ;
Chin, C ;
Denschlag, JH ;
Grimm, R .
PHYSICAL REVIEW LETTERS, 2004, 92 (12) :120401-1
[9]   Two nucleons on a lattice [J].
Beane, SR ;
Bedaque, PF ;
Parreño, A ;
Savage, MJ .
PHYSICS LETTERS B, 2004, 585 (1-2) :106-114
[10]   Lattice simulations for light nuclei: Chiral effective field theory at leading order [J].
Borasoy, B. ;
Epelbaum, E. ;
Krebs, H. ;
Lee, D. ;
Meissner, U. -G. .
EUROPEAN PHYSICAL JOURNAL A, 2007, 31 (01) :105-123