On a second numerical index for Banach spaces

被引:6
|
作者
Kim, Sun Kwang [1 ]
Lee, Han Ju [2 ]
Martin, Miguel [3 ]
Meri, Javier [3 ]
机构
[1] Chungbuk Natl Univ, Dept Math, 1 Chungdae Ro, Cheongju 28644, Chungbuk, South Korea
[2] Dongguk Univ Seoul, Dept Math Educ, 30 Pildong Ro 1 Gil, Seoul 04620, South Korea
[3] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
基金
新加坡国家研究基金会;
关键词
Banach space; numerical range; numerical index; skew hermitian operator; Bishop-Phelps-Bollobas property for the numerical radius; OPERATORS; PROPERTY; RADIUS;
D O I
10.1017/prm.2018.75
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a second numerical index for real Banach spaces with non-trivial Lie algebra, as the best constant of equivalence between the numerical radius and the quotient of the operator norm modulo the Lie algebra. We present a number of examples and results concerning absolute sums, duality, vector-valued function spaces horizontal ellipsis which show that, in many cases, the behaviour of this second numerical index differs from the one of the classical numerical index. As main results, we prove that Hilbert spaces have second numerical index one and that they are the only spaces with this property among the class of Banach spaces with one-unconditional basis and non-trivial Lie algebra. Besides, an application to the Bishop-Phelps-Bollobas property for the numerical radius is given.
引用
收藏
页码:1003 / 1051
页数:49
相关论文
共 50 条
  • [31] On the numerical index of real Lp(µ)-spaces
    Miguel Martín
    Javier Merí
    Mikhail Popov
    Israel Journal of Mathematics, 2011, 184 : 183 - 192
  • [32] A Banach–Zarecki Theorem for functions with values in Banach spaces
    Sokol Bush Kaliaj
    Monatshefte für Mathematik, 2014, 175 : 555 - 564
  • [33] Sup and Max Properties for the Numerical Radius of Operators in Banach Spaces
    Ostrovska, Sofiya
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (04) : 492 - 498
  • [34] SHIFTS ON PRODUCTS OF BANACH SPACES
    Moshokoa, S. P.
    Rajagopalan, M.
    Sundaresan, K.
    QUAESTIONES MATHEMATICAE, 2011, 34 (03) : 327 - 333
  • [35] Homological dimensions of Banach spaces
    Sanchez, F. Cabello
    Castillo, J. M. F.
    Garcia, R.
    SBORNIK MATHEMATICS, 2021, 212 (04) : 531 - 550
  • [36] Banach spaces in various positions
    Castillo, Jesus M. F.
    Plichko, Anatolij
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (08) : 2098 - 2138
  • [37] Generalized Numerical Index and Denseness of Numerical Peak Holomorphic Functions on a Banach Space
    Kim, Sung Guen
    Lee, Han Ju
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [38] Lushness, Numerical Index 1 and the Daugavet Property in Rearrangement Invariant Spaces
    Kadets, Vladimir
    Martin, Miguel
    Meri, Javier
    Werner, Dirk
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (02): : 331 - 348
  • [39] On Super Weak Compactness of Subsets and its Equivalences in Banach Spaces
    Cheng, Lixin
    Cheng, Qingjin
    Luo, Sijie
    Tu, Kun
    Zhang, Jichao
    JOURNAL OF CONVEX ANALYSIS, 2018, 25 (03) : 899 - 926
  • [40] Polynomial numerical indices of Banach spaces with 1-unconditional bases
    Lee, Han Ju
    Martin, Miguel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (08) : 2001 - 2008