On a second numerical index for Banach spaces

被引:6
|
作者
Kim, Sun Kwang [1 ]
Lee, Han Ju [2 ]
Martin, Miguel [3 ]
Meri, Javier [3 ]
机构
[1] Chungbuk Natl Univ, Dept Math, 1 Chungdae Ro, Cheongju 28644, Chungbuk, South Korea
[2] Dongguk Univ Seoul, Dept Math Educ, 30 Pildong Ro 1 Gil, Seoul 04620, South Korea
[3] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
基金
新加坡国家研究基金会;
关键词
Banach space; numerical range; numerical index; skew hermitian operator; Bishop-Phelps-Bollobas property for the numerical radius; OPERATORS; PROPERTY; RADIUS;
D O I
10.1017/prm.2018.75
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a second numerical index for real Banach spaces with non-trivial Lie algebra, as the best constant of equivalence between the numerical radius and the quotient of the operator norm modulo the Lie algebra. We present a number of examples and results concerning absolute sums, duality, vector-valued function spaces horizontal ellipsis which show that, in many cases, the behaviour of this second numerical index differs from the one of the classical numerical index. As main results, we prove that Hilbert spaces have second numerical index one and that they are the only spaces with this property among the class of Banach spaces with one-unconditional basis and non-trivial Lie algebra. Besides, an application to the Bishop-Phelps-Bollobas property for the numerical radius is given.
引用
收藏
页码:1003 / 1051
页数:49
相关论文
共 50 条
  • [21] Numerical index of vector-valued function spaces
    Baker, Abdullah Bin Abu
    Botelho, Fernanda
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (11) : 2117 - 2126
  • [22] On the Numerical Range of Operators on some Special Banach Spaces
    Mandal, Kalidas
    Bhanja, Aniket
    Bag, Santanu
    Paul, Kallol
    JOURNAL OF CONVEX ANALYSIS, 2022, 29 (02) : 371 - 380
  • [23] A semigroup approach to the numerical range of operators on Banach spaces
    Martin Adler
    Waed Dada
    Agnes Radl
    Semigroup Forum, 2017, 94 : 51 - 70
  • [24] ON THE BLOCK NUMERICAL RANGE OF OPERATORS ON ARBITRARY BANACH SPACES
    Radl, Agnes
    Wolff, Manfred P. H.
    OPERATORS AND MATRICES, 2018, 12 (01): : 229 - 252
  • [25] Polynomial numerical indices of Banach spaces with absolute norm
    Lee, Han Ju
    Martin, Miguel
    Meri, Javier
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) : 400 - 408
  • [26] A semigroup approach to the numerical range of operators on Banach spaces
    Adler, Martin
    Dada, Waed
    Radl, Agnes
    SEMIGROUP FORUM, 2017, 94 (01) : 51 - 70
  • [27] Subprojective Banach spaces
    Oikhberg, T.
    Spinu, E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) : 613 - 635
  • [28] Superprojective Banach spaces
    Gonzalez, Manuel
    Pello, Javier
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (02) : 1140 - 1151
  • [29] Banach Lattice Structures and Concavifications in Banach Spaces
    Agud, Lucia
    Calabuig, Jose Manuel
    Juan, Maria Aranzazu
    Sanchez Perez, Enrique A.
    MATHEMATICS, 2020, 8 (01)
  • [30] ON JOINT NUMERICAL RADIUS OF OPERATORS AND JOINT NUMERICAL INDEX OF A BANACH SPACE
    Mal, Arpita
    OPERATORS AND MATRICES, 2023, 17 (03): : 839 - 856