On a second numerical index for Banach spaces

被引:6
|
作者
Kim, Sun Kwang [1 ]
Lee, Han Ju [2 ]
Martin, Miguel [3 ]
Meri, Javier [3 ]
机构
[1] Chungbuk Natl Univ, Dept Math, 1 Chungdae Ro, Cheongju 28644, Chungbuk, South Korea
[2] Dongguk Univ Seoul, Dept Math Educ, 30 Pildong Ro 1 Gil, Seoul 04620, South Korea
[3] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
基金
新加坡国家研究基金会;
关键词
Banach space; numerical range; numerical index; skew hermitian operator; Bishop-Phelps-Bollobas property for the numerical radius; OPERATORS; PROPERTY; RADIUS;
D O I
10.1017/prm.2018.75
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a second numerical index for real Banach spaces with non-trivial Lie algebra, as the best constant of equivalence between the numerical radius and the quotient of the operator norm modulo the Lie algebra. We present a number of examples and results concerning absolute sums, duality, vector-valued function spaces horizontal ellipsis which show that, in many cases, the behaviour of this second numerical index differs from the one of the classical numerical index. As main results, we prove that Hilbert spaces have second numerical index one and that they are the only spaces with this property among the class of Banach spaces with one-unconditional basis and non-trivial Lie algebra. Besides, an application to the Bishop-Phelps-Bollobas property for the numerical radius is given.
引用
收藏
页码:1003 / 1051
页数:49
相关论文
共 50 条
  • [1] On the numerical index of Banach spaces
    Ed-dari, E
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 403 : 86 - 96
  • [2] On the Lipschitz numerical index of Banach spaces
    Choi, Geunsu
    Jung, Mingu
    Tag, Hyung-Joon
    COLLECTANEA MATHEMATICA, 2025, 76 (01) : 81 - 103
  • [3] Numerical index of absolute sums of Banach spaces
    Martin, Miguel
    Meri, Javier
    Popov, Mikhail
    Randrianantoanina, Beata
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (01) : 207 - 222
  • [4] On the numerical index of polyhedral Banach spaces
    Sain, Debmalya
    Paul, Kallol
    Bhunia, Pintu
    Bag, Santanu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 577 : 121 - 133
  • [5] CONVEXITY AND SMOOTHNESS OF BANACH SPACES WITH NUMERICAL INDEX ONE
    Kadets, Vladimir
    Martin, Miguel
    Meri, Javier
    Paya, Rafael
    ILLINOIS JOURNAL OF MATHEMATICS, 2009, 53 (01) : 163 - 182
  • [6] POSITIVE AND NEGATIVE RESULTS ON THE NUMERICAL INDEX OF BANACH SPACES AND DUALITY
    Martin, Miguel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (09) : 3067 - 3075
  • [7] Finite-dimensional Banach spaces with numerical index zero
    Martín, M
    Merí, J
    Rodríguez-Palacios, A
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (05) : 1279 - 1289
  • [8] Two-dimensional Banach spaces with polynomial numerical index zero
    Garcia, Domingo
    Grecu, Bogdan C.
    Maestre, Manuel
    Martin, Miguel
    Meri, Javier
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 2488 - 2500
  • [9] Properties of lush spaces and applications to Banach spaces with numerical index 1
    Boyko, Kostyantyn
    Kadets, Vladimir
    Martin, Miguel
    Meri, Javier
    STUDIA MATHEMATICA, 2009, 190 (02) : 117 - 133
  • [10] Numerical index of Banach spaces of weakly or weakly-star continuous functions
    Lopez, Genes
    Martin, Miguel
    Meri, Javier
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2008, 38 (01) : 213 - 223