Engineered synthesis of 7-oxo- and 15-deoxy-15-Oxo-Amphotericins: Insights into structure-activity relationships in polyene antibiotics

被引:43
作者
Power, Patrick [1 ,2 ]
Dunne, Terence [1 ,2 ]
Murphy, Barry [1 ,2 ]
Lochlainn, Laura Nic [1 ,2 ]
Rai, Dilip [1 ,2 ]
Borissow, Charles [3 ]
Rawlings, Bernard [3 ]
Caffrey, Patrick [1 ,2 ]
机构
[1] Univ Coll Dublin, Sch Biomol & Biomed Sci, Dublin 4, Ireland
[2] Univ Coll Dublin, Ctr Synthesis & Chem Biol, Dublin 4, Ireland
[3] Univ Leicester, Dept Chem, Leicester LE1 7RH, Leics, England
来源
CHEMISTRY & BIOLOGY | 2008年 / 15卷 / 01期
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1016/j.chembiol.2007.11.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Site-directed mutagenesis and gene replacement were used to inactivate two ketoreductase (KR) domains within the amphotericin polyketide synthase in Streptomyces nodosus. The KR12 domain was inactivated in the Delta amphNM strain, which produces 16-descarboxyl-16-methyl-amphotericins. The resulting mutant produced low levels of the expected 15-deoxy-15-oxo analogs that retained antifungal activity. These compounds can be useful for further chemical modification. Inactivation of the KR16 domain in the wild-type strain led to production of 7-oxo-amphotericin A and 7-oxo-amphotericin B in good yield. 7-oxo-amphotericin B was isolated, purified, and characterized as the N-acetyl methyl ester derivative. 7-oxo-amphotericin B had good antifungal activity and was less hemolytic than amphotericin B. These results indicate that modification at the C-7 position can improve the therapeutic index of amphotericin B.
引用
收藏
页码:78 / 86
页数:9
相关论文
共 36 条
  • [21] Bioactive fluorinated derivative of amphotericin B
    Matsumori, N
    Umegawa, Y
    Oishi, T
    Murata, M
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2005, 15 (15) : 3565 - 3567
  • [22] Engineered biosynthesis of novel polyenes:: a pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis
    Mendes, MV
    Recio, E
    Fouces, R
    Luiten, R
    Martín, JF
    Aparicio, JF
    [J]. CHEMISTRY & BIOLOGY, 2001, 8 (07): : 635 - 644
  • [23] Omura S., 1986, MACROLIDE ANTIBIOTIC, P351
  • [24] Significant improvement of antifungal activity of polyene macrolides by bisalkylation of the mycosamine
    Paquet, V
    Carreira, EM
    [J]. ORGANIC LETTERS, 2006, 8 (09) : 1807 - 1809
  • [25] STEREOSTRUCTURE AND NMR CHARACTERIZATION OF THE ANTIBIOTIC CANDIDIN
    PAWLAK, J
    SOWINSKI, P
    BOROWSKI, E
    GARIBOLDI, P
    [J]. JOURNAL OF ANTIBIOTICS, 1993, 46 (10) : 1598 - 1604
  • [26] Glycerol, ethylene glycol and propanediol elicit pimaricin blosynthesis in the PI-factor-defective strain Streptomyces natalensis npi287 and increase polyene production in several wild-type actinomycetes
    Recio, Eliseo
    Aparicio, Jesus F.
    Rumbero, Angel
    Martin, Juan F.
    [J]. MICROBIOLOGY-SGM, 2006, 152 : 3147 - 3156
  • [27] A model of structure and catalysis for ketoreductase domains in modular polyketide synthases
    Reid, R
    Piagentini, M
    Rodriguez, E
    Ashley, G
    Viswanathan, N
    Carney, J
    Santi, DV
    Hutchinson, CR
    McDaniel, R
    [J]. BIOCHEMISTRY, 2003, 42 (01) : 72 - 79
  • [28] SCHAFFNER CP, 1984, MACROLIDE ANTIBIOTIC, P457
  • [29] A tailoring activity is responsible for generating polyene amide derivatives in Streptomyces diastaticus var. 108
    Seco, EM
    Fotso, S
    Laatsch, H
    Malpartida, F
    [J]. CHEMISTRY & BIOLOGY, 2005, 12 (10): : 1093 - 1101
  • [30] CATION CONDUCTANCE AND EFFLUX INDUCED BY POLYENE ANTIBIOTICS IN THE MEMBRANE OF SKELETAL-MUSCLE FIBER
    SHVINKA, N
    CAFFIER, G
    [J]. BIOPHYSICAL JOURNAL, 1994, 67 (01) : 143 - 152