Virtual elements for Maxwell's equations

被引:29
作者
da Veiga, L. Beirao [1 ]
Dassi, F. [1 ]
Manzini, G. [2 ]
Mascotto, L. [3 ]
机构
[1] Univ Milano Bicocca, Dip Matemat & Applicaz, Milan, Italy
[2] CNR, Ist Matemat Applicata & Tecnol Informat, Pavia, Italy
[3] Univ Wien, Fak Math, Vienna, Austria
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
Polyhedral meshes; Virtual element method; Maxwell's equations; APPROXIMATION; SCATTERING; BODIES;
D O I
10.1016/j.camwa.2021.08.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a low order virtual element discretization for time dependent Maxwell's equations, which allow for the use of general polyhedral meshes. Both the semi- and fully-discrete schemes are considered. We derive optimal a priori estimates and validate them on a set of numerical experiments. As pivot results, we discuss some novel inequalities associated with de Rahm sequences of nodal, edge, and face virtual element spaces.
引用
收藏
页码:82 / 99
页数:18
相关论文
共 47 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]   A Recursive Algebraic Coloring Technique for Hardware-efficient Symmetric Sparse Matrix-vector Multiplication [J].
Alappat, Christie ;
Basermann, Achim ;
Bishop, Alan R. ;
Fehske, Holger ;
Hager, Georg ;
Schenk, Olaf ;
Thies, Jonas ;
Wellein, Gerhard .
ACM TRANSACTIONS ON PARALLEL COMPUTING, 2020, 7 (03)
[3]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[4]  
2-B
[5]  
[Anonymous], 2013, MIXED FINITE ELEMENT
[6]  
[Anonymous], 2003, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation
[7]   ON A FINITE-ELEMENT METHOD FOR SOLVING THE 3-DIMENSIONAL MAXWELL EQUATIONS [J].
ASSOUS, F ;
DEGOND, P ;
HEINTZE, E ;
RAVIART, PA ;
SEGRE, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 109 (02) :222-237
[8]   Virtual element methods on meshes with small edges or faces [J].
Brenner, Susanne C. ;
Sung, Li-Yeng .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (07) :1291-1336
[9]   BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS [J].
Brezzi, F. ;
Falk, Richard S. ;
Marini, L. Donatella .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (04) :1227-1240
[10]   A Three-Dimensional Hybrid High-Order Method for Magnetostatics [J].
Chave, Florent ;
Di Pietro, Daniele A. ;
Lemaire, Simon .
FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 :255-263