Inactivated Lactobacillus promotes protection against myocardial ischemia-reperfusion injury through NF-κB pathway

被引:16
|
作者
Wang, Ni [1 ]
Song, Genhong [2 ]
Yang, Yang [3 ]
Yuan, Weiwei [2 ]
Qi, Ming [1 ]
机构
[1] Yanan Univ Shanxi, Affiliated Hosp, Gerontol Dept, 43 North St, Yanan 716000, Shanxi, Peoples R China
[2] Yanan Univ Shanxi, Affiliated Hosp, Intens Care Unit, 43 North St, Yanan 716000, Shanxi, Peoples R China
[3] Yanan Univ Shanxi, Affiliated Hosp, Thoracis Surg Dept, 43 North St, Yanan 716000, Shanxi, Peoples R China
关键词
ISCHEMIA/REPERFUSION; INFLAMMATION;
D O I
10.1042/BSR20171025
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although restoration of blood flow to an ischemic organ is essential to prevent irreversible cellular injury, reperfusion may augment tissue injury in excess of that produced by ischemia alone. So this experiment was designed to study the protective effects and mechanism of inactivated Lactobacillus (Lac) on myocardial ischemia-reperfusion (I-R) injury (MIRI). MIRI rat models were established by ligation of left anterior descending coronary artery for similar to 30 min and then, reperfusion for 120 min and divided into control group, model group, and Lac (106, 107, and 108 cfu/kg) groups. At the end of the test, the creatine kinase (CK) activity, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were assayed by corresponding kits. The heart was obtained from rats and the myocardial infarction area was determined by TTC staining and myocardial endothelial cell apoptosis rate was determined by Tunel kit. Besides, A20, I kappa B, nuclear factor (NF)-kappa B,and nitric oxide (NO) synthase (NOS) were also assayed by Western blot. When compared with model group, Lac obviously reduces MIRI in the rat by reducing myocardial infarction area and the apoptosis rate of endothelial cells; reduce the serum CK, LDH, and MDA content; increase the serum SOD activity; and suppress NF-kappa B signaling and NOS expression in the myocardial tissues. Lac pretreatment can inhibit lipid peroxidation and effectively improve MIRI caused by oxygen free radical through inhibiting NF-kappa B signaling.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Baicalin attenuates myocardial ischemia-reperfusion injury through Akt/NF-κB pathway
    Luan, Yun
    Sun, Chao
    Wang, Jue
    Jiang, Wen
    Xin, Qian
    Zhang, Zhaohua
    Wang, Yibiao
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (03) : 3212 - 3219
  • [2] MiR-140 protects against myocardial ischemia-reperfusion injury by regulating NF-κB pathway
    Hao, L-Y
    Lu, Y.
    Ma, Y-C
    Wei, R-P
    Jia, Y-P
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (21) : 11266 - 11272
  • [3] Valsartan preconditioning protects against myocardial ischemia-reperfusion injury through TLR4/NF-κB signaling pathway
    Yang, Jian
    Jiang, Hong
    Yang, Jun
    Ding, Jia-Wang
    Chen, Li-Hua
    Li, Song
    Zhang, Xiao-Dong
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2009, 330 (1-2) : 39 - 46
  • [4] Propofol improves intestinal ischemia-reperfusion injury in rats through NF-κB pathway
    Wu, M-B
    Ma, B.
    Zhang, T-X
    Zhao, K.
    Cui, S-M
    He, S-C
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (11) : 6463 - 6469
  • [5] Remimazolam attenuates myocardial ischemia-reperfusion injury by inhibiting the NF-ĸB pathway of macrophage inflammation
    Xu, Hao
    Chen, Yizhu
    Xie, Pengyun
    Lei, Tailong
    Liu, Keyu
    Liu, Xiaolei
    Tang, Jin
    Zhang, Liangqing
    Yang, Jihong
    Hu, Zhe
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2024, 965
  • [6] MicroRNA-24 protects against myocardial ischemia-reperfusion injury via the NF-κB/TNF-α pathway
    Li, Chenlei
    Fang, Ming
    Lin, Zhikang
    Wang, Wenhui
    Li, Xinming
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 22 (05)
  • [7] Ticagrelor Reduces Ischemia-Reperfusion Injury Through the NF-κB-Dependent Pathway in Rats
    Liu, Xiaogang
    Wang, Yuting
    Zhang, Mingjing
    Liu, Yufeng
    Hu, Liqun
    Gu, Ye
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2019, 74 (01) : 13 - 19
  • [8] The Role of NF-κB in Myocardial Ischemia/Reperfusion Injury
    Dong, Peiliang
    Liu, Kemeng
    Han, Hua
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2022, 23 (08) : 535 - 547
  • [9] Inhibition of miR-217 Protects Against Myocardial Ischemia-Reperfusion Injury Through Inactivating NF-κB and MAPK Pathways
    Li, Yanfang
    Fei, Liping
    Wang, Junli
    Niu, Qingying
    CARDIOVASCULAR ENGINEERING AND TECHNOLOGY, 2020, 11 (02) : 219 - 227
  • [10] Arginase-2 protects myocardial ischemia-reperfusion injury via NF-κB/TNF-α pathway
    Huang, X. -W.
    Pan, M. -D.
    Du, P. -H.
    Wang, L. -X.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2018, 22 (19) : 6529 - 6537