Parkinson's disease EMG signal prediction using Neural Networks

被引:0
作者
Zanini, Rafael Anicet [1 ]
Colombini, Esther Luna [1 ]
Ferrari de Castro, Maria Claudia [2 ]
机构
[1] Univ Estadual Campinas, Lab Robot & Cognit Sci LaRoCS, Campinas, Brazil
[2] Fundao Educ Inaciana Padre Sabia Medeiros FEI, Dept Comp Sci, Sao Bernardo Do Campo, Brazil
来源
2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC) | 2019年
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, and provide reasonable predictions for both EMG envelopes and EMG raw signals. Therefore, one could use these models as input for a control strategy for functional electrical stimulation (FES) devices used on tremor suppression, by dynamically predicting and improving FES control parameters based on tremor forecast.
引用
收藏
页码:2446 / 2453
页数:8
相关论文
共 25 条
  • [11] Kingma DP, 2014, ARXIV
  • [12] Laptev N, 2017, INT C MACH LEARN, P1
  • [13] Lee S, 2014, INT CONF UBIQ FUTUR, P140, DOI 10.1109/ICUFN.2014.6876768
  • [14] Functional electrical stimulation for neuromuscular applications
    Peckham, PH
    Knutson, JS
    [J]. ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2005, 7 : 327 - 360
  • [15] Parkinson's Disease Tremor Suppression A Double Approach Study - Part 1
    Pinheiro, Wellington C.
    Bittencourt, Bruno E.
    Luiz, Lucas B.
    Marcello, Lucas A.
    Antonio, Vinicius F.
    de Lira, Paulo Henrique A.
    Stolf, Ricardo G.
    Castro, Maria Claudia F.
    [J]. PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 1: BIODEVICES, 2017, : 149 - 155
  • [16] Rojas H. A. G., 2009, US Patent, Patent No. [12/442,784, 12442784]
  • [17] Rosenbluth K. H., 2016, US Patent, Patent No. [2017/0014625 A1, 20170014625]
  • [18] Sainath TN, 2015, INT CONF ACOUST SPEE, P4580, DOI 10.1109/ICASSP.2015.7178838
  • [19] Siores E., 2011, UK Patent GB, Patent No. 2444393
  • [20] Souza A. C., 2012, IFAC PAPERSONLINE, V49-32