Effect of the surface charge distribution on the fluid phase behavior of charged colloids and proteins

被引:29
作者
Blanco, Marco A. [1 ,2 ]
Shen, Vincent K. [1 ]
机构
[1] Natl Inst Stand & Technol, Div Chem Sci, Chem Informat Grp, Mat Measurement, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Inst Biosci & Biotechnol Res, Rockville, MD 20850 USA
关键词
INVERSE PATCHY COLLOIDS; 2ND VIRIAL-COEFFICIENTS; CLUSTER FORMATION; AQUEOUS-SOLUTIONS; COMPETING INTERACTIONS; MEMBRANE-PROTEINS; DIPOLAR PARTICLES; AMMONIUM-SULFATE; CRYSTALLIZATION; AGGREGATION;
D O I
10.1063/1.4964613
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A generic but simple model is presented to evaluate the effect of the heterogeneous surface charge distribution of proteins and zwitterionic nanoparticles on their thermodynamic phase behavior. By considering surface charges as continuous "patches,"the rich set of surface patterns that is embedded in proteins and charged patchy particles can readily be described. This model is used to study the fluid phase separation of charged particles where the screening length is of the same order of magnitude as the particle size. In particular, two types of charged particles are studied: dipolar fluids and protein-like fluids. The former represents the simplest case of zwitterionic particles, whose charge distribution can be described by their dipole moment. The latter system corresponds to molecules/particles with complex surface charge arrangements such as those found in biomolecules. The results for both systems suggest a relation between the critical region, the strength of the interparticle interactions, and the arrangement of charged patches, where the critical temperature is strongly correlated to the magnitude of the dipole moment. Additionally, competition between attractive and repulsive charge-charge interactions seems to be related to the formation of fluctuating clusters in the dilute phase of dipolar fluids, as well as to the broadening of the binodal curve in protein-like fluids. Finally, a variety of self-assembled architectures are detected for dipolar fluids upon small changes to the charge distribution, providing the groundwork for studying the self-assembly of charged patchy particles.
引用
收藏
页数:13
相关论文
共 112 条
[1]   Protein aggregation, particle formation, characterization & rheology [J].
Amin, Samiul ;
Barnett, Gregory V. ;
Pathak, Jai A. ;
Roberts, Christopher J. ;
Sarangapani, Prasad S. .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2014, 19 (05) :438-449
[2]   Oligomerization and phase transitions in aqueous solutions of native and truncated human βB1-crystalline [J].
Annunziata, O ;
Pande, A ;
Pande, J ;
Ogun, O ;
Lubsen, NH ;
Benedek, GB .
BIOCHEMISTRY, 2005, 44 (04) :1316-1328
[3]  
[Anonymous], 2015, J CHEM PHYS
[4]   Protein crystallization and phase diagrams [J].
Asherie, N .
METHODS, 2004, 34 (03) :266-272
[5]   Phase diagram of colloidal solutions [J].
Asherie, N ;
Lomakin, A ;
Benedek, GB .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4832-4835
[6]   Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles [J].
Baumgart, Tobias ;
Hammond, Adam T. ;
Sengupta, Prabuddha ;
Hess, Samuel T. ;
Holowka, David A. ;
Baird, Barbara A. ;
Webb, Watt W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (09) :3165-3170
[7]   Characterizing Intermolecular Interactions That Initiate Native-Like Protein Aggregation [J].
Bemporad, Francesco ;
De Simone, Alfonso ;
Chiti, Fabrizio ;
Dobson, Christopher M. .
BIOPHYSICAL JOURNAL, 2012, 102 (11) :2595-2604
[8]   Phase diagram of patchy colloids: Towards empty liquids [J].
Bianchi, Emanuela ;
Largo, Julio ;
Tartaglia, Piero ;
Zaccarelli, Emanuela ;
Sciortino, Francesco .
PHYSICAL REVIEW LETTERS, 2006, 97 (16)
[9]   Soft-patchy nanoparticles: modeling and self-organization [J].
Bianchi, Emanuela ;
Capone, Barbara ;
Kahl, Gerhard ;
Likos, Christos N. .
FARADAY DISCUSSIONS, 2015, 181 :123-138
[10]   Tunable Assembly of Heterogeneously Charged Colloids [J].
Bianchi, Emanuela ;
Likos, Christos N. ;
Kahl, Gerhard .
NANO LETTERS, 2014, 14 (06) :3412-3418