WEIGHTED NORM INEQUALITIES FOR MULTILINEAR FOURIER MULTIPLIERS WITH CRITICAL BESOV REGULARITY

被引:4
作者
Fujita, Mai [1 ]
Tomita, Naohito [2 ]
机构
[1] Wakkanai Hokusei Gakuen Univ, Fac Integrated Media, Wakkanai, Hokkaido 0970013, Japan
[2] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
Multilinear Fourier multipliers; A(p)-weights; Besov spaces; SMOOTHNESS; OPERATORS;
D O I
10.1090/proc/13680
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, weighted norm inequalities for multilinear Fourier multipliers with Besov regularity are discussed. As a result, we obtain a limiting case of Hormander type multiplier theorem for multilinear operators.
引用
收藏
页码:555 / 569
页数:15
相关论文
共 22 条
  • [12] New maximal functions and multiple weights for the multilinear Calderon-Zygmund theory
    Lerner, Andrei K.
    Ombrosi, Sheldy
    Perez, Carlos
    Torres, Rodolfo H.
    Trujillo-Gonzalez, Rodrigo
    [J]. ADVANCES IN MATHEMATICS, 2009, 220 (04) : 1222 - 1264
  • [13] Weighted estimates for multilinear Fourier multipliers
    Li, Kangwei
    Sun, Wenchang
    [J]. FORUM MATHEMATICUM, 2015, 27 (02) : 1101 - 1116
  • [14] Weighted version of Carleson measure and multilinear Fourier multiplier
    Li, Wenjuan
    Xue, Qingying
    Yabuta, Kozo
    [J]. FORUM MATHEMATICUM, 2015, 27 (02) : 787 - 805
  • [15] Minimal smoothness conditions for bilinear Fourier multipliers
    Miyachi, Akihiko
    Tomita, Naohito
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (02) : 495 - 530
  • [16] Qui B. H., 1982, Hiroshima Math. J, V12, P581
  • [17] Runst T., 1996, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, DOI DOI 10.1515/9783110812411
  • [18] ESTIMATES NEAR L1 FOR FOURIER MULTIPLIERS AND MAXIMAL FUNCTIONS
    SEEGER, A
    [J]. ARCHIV DER MATHEMATIK, 1989, 53 (02) : 188 - 193
  • [19] Sugimoto M, 1988, Tsukuba J. Math., V12, P43
  • [20] A Hormander type multiplier theorem for multilinear operators
    Tomita, Naohito
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (08) : 2028 - 2044