Applications of the Backus-Gilbert method to linear and some nonlinear equations

被引:3
作者
Leitao, A [1 ]
机构
[1] Univ Fed Santa Catarina, Dept Math, Florianopolis, SC, Brazil
关键词
D O I
10.1088/0266-5611/14/5/012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the use of a functional analytical version of the Backus-Gilbert method as a reconstruction strategy to obtain specific information on the solution of linear and slightly nonlinear systems with Frechet derivable operators. Some a priori error estimates are shown and tested for two classes of problems: a nonlinear moment problem and a linear elliptic Cauchy problem. For this second class of problems a special version of the Green formula is developed in order to analyse the involved adjoint equations.
引用
收藏
页码:1285 / 1297
页数:13
相关论文
共 18 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   UNIQUENESS IN INVERSION OF INACCURATE GROSS EARTH DATA [J].
BACKUS, G ;
GILBERT, F .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1970, 266 (1173) :123-&
[3]   RESOLVING POWER OF GROSS EARTH DATA [J].
BACKUS, G ;
GILBERT, F .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1968, 16 (02) :169-&
[4]   NUMERICAL APPLICATIONS OF A FORMALISM FOR GEOPHYSICAL INVERSE PROBLEMS [J].
BACKUS, GE ;
GILBERT, JF .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (1-3) :247-&
[5]   GENERALIZED SENTINELS DEFINED VIA LEAST-SQUARES [J].
CHAVENT, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 1995, 31 (02) :189-218
[6]  
Dautray R., 1988, MATH ANAL NUMERICAL, V2
[7]  
Gilbarg D, 1977, ELLIPTIC PARTIAL DIF
[8]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[9]   THE BACKUS-GILBERT METHOD REVISITED - BACKGROUND, IMPLEMENTATION AND EXAMPLES [J].
HAARIO, H ;
SOMERSALO, E .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1987, 9 (9-10) :917-943
[10]   THE BACKUS-GILBERT PROBLEM FOR SAMPLED BAND-LIMITED FUNCTIONS [J].
HUESTIS, SP .
INVERSE PROBLEMS, 1992, 8 (06) :873-887