Some Remarks on Schwarz Lemma at the Boundary

被引:12
作者
Akyel, Tugba [1 ]
Ornek, Bulent Nafi [1 ,2 ]
机构
[1] Gebze Tech Univ, Dept Math, TR-41400 Gebze, Turkey
[2] Amasya Univ, Dept Comp Engn, TR-05100 Merkez Amasya, Turkey
关键词
Holomorphic function; Schwarz lemma on the boundary; Angular limit; Angular derivative; INEQUALITY;
D O I
10.2298/FIL1713139A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a boundary version of the Schwarz lemma is investigated. We consider a function f holomorphic in the unit disc D, f(a) = b, broken vertical bar a broken vertical bar < 1 and broken vertical bar f(z) - alpha broken vertical bar < alpha for z is an element of D, where a is a positive real number and 1/2 < alpha <= 1. We obtain sharp lower bounds on the angular derivative f'(c) at the point c, where f(c) = 2 alpha, broken vertical bar c broken vertical bar = 1.
引用
收藏
页码:4139 / 4151
页数:13
相关论文
共 16 条
[1]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[2]   A refined Schwarz inequality on the boundary [J].
Azeroglu, T. Aliyev ;
Ornek, B. N. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (04) :571-577
[3]   Julius and Julia: Mastering the Art of the Schwarz Lemma [J].
Boas, Harold P. .
AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (09) :770-785
[4]  
Burns D M., 1994, J AM MATH SOC, V7, P661, DOI [10.1090/S0894-0347-1994-1242454-2, DOI 10.1090/S0894-0347-1994-1242454-2]
[5]   A generalized Schwarz lemma at the boundary [J].
Chelst, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (11) :3275-3278
[6]   Bounded holomorphic functions covering no concentric circles [J].
Dubinin V.N. .
Journal of Mathematical Sciences, 2015, 207 (6) :825-831
[7]  
Golusin GM., 1966, GEOMETRIC THEORY FUN
[8]   THE SCHWARZ LEMMA AND ITS APPLICATION AT A BOUNDARY POINT [J].
Jeong, Moonja .
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2014, 21 (03) :219-227
[9]   THE SCHWARZ LEMMA AND BOUNDARY FIXED POINTS [J].
Jeong, Moonja .
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2011, 18 (03) :275-284
[10]   On the lower bounds of the curvatures in a bounded domain [J].
Lu QiKeng .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (01) :1-10