Geometry of homoclinic connections in a planar circular restricted three-body problem

被引:20
|
作者
Gidea, Marian [1 ]
Masdemont, Josep J.
机构
[1] NE Illinois Univ, Dept Math, Chicago, IL 60625 USA
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 1, ETSEIB, E-08028 Barcelona, Spain
来源
基金
美国国家科学基金会;
关键词
three-body problem; invariant manifolds; homoclinic orbits; symbolic dynamics; INVARIANT-MANIFOLDS; PERIODIC-ORBITS; DYNAMICS; POINTS;
D O I
10.1142/S0218127407017744
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stable and unstable invariant manifolds associated with Lyapunov orbits about the libration point L-1 between the primaries in the planar circular restricted three-body problem with equal masses are considered. The behavior of the intersections of these invariant manifolds for values of the energy between that of L-1 and the other collinear libration points L-2, L-3 is studied using symbolic dynamics. Homoclinic orbits are classified according to the number of turns about the primaries.
引用
收藏
页码:1151 / 1169
页数:19
相关论文
共 50 条