Geometry of homoclinic connections in a planar circular restricted three-body problem

被引:21
作者
Gidea, Marian [1 ]
Masdemont, Josep J.
机构
[1] NE Illinois Univ, Dept Math, Chicago, IL 60625 USA
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 1, ETSEIB, E-08028 Barcelona, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2007年 / 17卷 / 04期
基金
美国国家科学基金会;
关键词
three-body problem; invariant manifolds; homoclinic orbits; symbolic dynamics; INVARIANT-MANIFOLDS; PERIODIC-ORBITS; DYNAMICS; POINTS;
D O I
10.1142/S0218127407017744
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stable and unstable invariant manifolds associated with Lyapunov orbits about the libration point L-1 between the primaries in the planar circular restricted three-body problem with equal masses are considered. The behavior of the intersections of these invariant manifolds for values of the energy between that of L-1 and the other collinear libration points L-2, L-3 is studied using symbolic dynamics. Homoclinic orbits are classified according to the number of turns about the primaries.
引用
收藏
页码:1151 / 1169
页数:19
相关论文
共 27 条
[1]  
Abraham R., 1985, FDN MECH
[2]  
Appleyard D.F., 1970, THESIS U WISCONSIN
[3]  
Belbruno E., 2004, CAPTURE DYNAMICS CHA
[4]   HYDRODYNAMIC SIMULATIONS OF THE MASS-TRANSFER IN ALGOL [J].
BLONDIN, JM ;
RICHARDS, MT ;
MALINOWSKI, ML .
ASTROPHYSICAL JOURNAL, 1995, 445 (02) :939-946
[5]  
Canalias E, 2006, DISCRETE CONT DYN-A, V14, P261
[6]  
Conley C. C., 1978, Isolated invariant sets and the Morse index. Number38 in CBMS regional conference series in mathematics
[7]   LOW ENERGY TRANSIT ORBITS IN RESTRICTED 3-BODY PROBLEM [J].
CONLEY, CC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (04) :732-&
[8]   Transport of Mars-crossing asteroids from the quasi-Hilda region [J].
Dellnitz, M ;
Junge, O ;
Lo, MW ;
Marsden, JE ;
Padberg, K ;
Preis, R ;
Ross, SD ;
Thiere, B .
PHYSICAL REVIEW LETTERS, 2005, 94 (23)
[9]   Transport in dynamical astronomy and multibody problems [J].
Dellnitz, M ;
Junge, O ;
Koon, WS ;
Lekien, F ;
Lo, MW ;
Marsden, JE ;
Padberg, K ;
Preis, R ;
Ross, SD ;
Thiere, B .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (03) :699-727
[10]   HOMOCLINIC PHENOMENA FOR ORBITS DOUBLY ASYMPTOTIC TO AN INVARIANT 3-SPHERE [J].
EASTON, RW ;
MCGEHEE, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (02) :211-240