Bayesian Pseudo Labels: Expectation Maximization for Robust and Efficient Semi-supervised Segmentation

被引:8
|
作者
Xu, Mou-Cheng [1 ]
Zhou, Yukun [1 ]
Jin, Chen [1 ]
de Groot, Marius [2 ]
Alexander, Daniel C. [1 ]
Oxtoby, Neil P. [1 ]
Hu, Yipeng [1 ]
Jacob, Joseph [1 ]
机构
[1] UCL, Ctr Med Image Comp, London, England
[2] GlaxoSmithKline Res & Dev Ltd, Stevenage, Herts, England
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
Semi-supervised segmentation; Pseudo labels; Expectation-maximization; Variational inference; Uncertainty; Probabilistic modelling; Out-of-distribution; Adversarial robustness;
D O I
10.1007/978-3-031-16443-9_56
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper concerns pseudo labelling in segmentation. Our contribution is fourfold. Firstly, we present a new formulation of pseudo-labelling as an Expectation-Maximization (EM) algorithm for clear statistical interpretation. Secondly, we propose a semi-supervised medical image segmentation method purely based on the original pseudo labelling, namely SegPL. We demonstrate SegPL is a competitive approach against state-of-the-art consistency regularisation based methods on semi-supervised segmentation on a 2D multi-class MRI brain tumour segmentation task and a 3D binary CT lung vessel segmentation task. The simplicity of SegPL allows less computational cost comparing to prior methods. Thirdly, we demonstrate that the effectiveness of SegPL may originate from its robustness against out-of-distribution noises and adversarial attacks. Lastly, under the EM framework, we introduce a probabilistic generalisation of SegPL via variational inference, which learns a dynamic threshold for pseudo labelling during the training. We show that SegPL with variational inference can perform uncertainty estimation on par with the gold-standard method Deep Ensemble.
引用
收藏
页码:580 / 590
页数:11
相关论文
共 50 条
  • [31] Labels diffusion on graphs: Application to semi-supervised segmentation and data classification
    Diffusion de labels sur graphe: Application à la segmentation semi-supervisée et à la classification de données
    1600, Lavoisier (27): : 299 - 320
  • [32] An efficient and scalable semi-supervised framework for semantic segmentation
    Huazheng Hao
    Hui Xiao
    Junjie Xiong
    Li Dong
    Diqun Yan
    Dongtai Liang
    Jiayan Zhuang
    Chengbin Peng
    Neural Computing and Applications, 2025, 37 (7) : 5481 - 5497
  • [33] Robust Semi-Supervised Learning when Not All Classes have Labels
    Guo, Lan-Zhe
    Zhang, Yi-Ge
    Wu, Zhi-Fan
    Shao, Jie-Jing
    Li, Yu-Feng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [34] Momentum Pseudo-Labeling: Semi-Supervised ASR With Continuously Improving Pseudo-Labels
    Higuchi, Yosuke
    Moritz, Niko
    Le Roux, Jonathan
    Hori, Takaaki
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (06) : 1424 - 1438
  • [35] Rumor detection in Arabic tweets using semi-supervised and unsupervised expectation-maximization
    Alzanin, Samah M.
    Azmi, Aqil M.
    KNOWLEDGE-BASED SYSTEMS, 2019, 185
  • [36] Dense Teacher: Dense Pseudo-Labels for Semi-supervised Object Detection
    Zhou, Hongyu
    Ge, Zheng
    Liu, Songtao
    Mao, Weixin
    Li, Zeming
    Yu, Haiyan
    Sun, Jian
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 35 - 50
  • [37] Semi-Supervised Deep Learning Using Pseudo Labels for Hyperspectral Image Classification
    Wu, Hao
    Prasad, Saurabh
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1259 - 1270
  • [38] Mind the Gap: Polishing Pseudo Labels for Accurate Semi-supervised Object Detection
    Zhang, Lei
    Sun, Yuxuan
    Wei, Wei
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 3, 2023, : 3463 - 3471
  • [39] Semi-supervised dimensionality reduction of hyperspectral imagery using pseudo-labels
    Wu, Hao
    Prasad, Saurabh
    PATTERN RECOGNITION, 2018, 74 : 212 - 224
  • [40] Semi-Supervised Building Footprint Extraction Using Debiased Pseudo-Labels
    Huang, Wei
    Gu, Ziqi
    Shi, Yilei
    Xiong, Zhitong
    Zhu, Xiao Xiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63