MATHEMATICAL MODELING AND OPTIMAL CONTROL STRATEGY FOR THE OBESITY EPIDEMIC

被引:7
作者
El Mansouri, Abdelbar [1 ]
Labzai, Abderrahim [2 ]
Belam, Mohamed [1 ]
Rachik, Mostafa [2 ]
机构
[1] Sultan Moulay Slimane Univ, Khouribga Polydisciplinary Fac, Dept Math & Comp Sci, Lab LMACS,MATIC Res Team Appl Math & Informat & C, Beni Mellal, Morocco
[2] Hassan II Univ Casablanca, Fac Sci Ben MSik, Dept Math & Comp Sci, Lab Anal Modeling & Simulat, Casablanca, Morocco
关键词
obesity epidemic; mathematical modeling; optimal control; DYNAMICS;
D O I
10.28919/cmbn/6953
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this work is to propose a discrete mathematical model to study the behavioral dynamics of a population affected by the disease of obesity. Thus, the population under study is divided into six compartments: susceptible (S), exposed (E), slightly obese (I1), moderately obese (I2), very obese (I3), and recovered (R). To fight this disease, we used four controls: Awareness through education and media, food and sports programs, medical treatment with drugs, and treatment with surgical intervention. The discrete time Pontryagin maximum principle is used to characterize the optimal controls. The numerical simulation via MATLAB confirms the performance of theoretical results.
引用
收藏
页数:15
相关论文
共 50 条
[31]   Mathematical modeling and optimal control of tuberculosis spread among smokers with case detection [J].
Alfiniyah, Cicik ;
Soetjianto, Wanwha Sonia Putri Artha ;
Ahmadin ;
Aziz, Muhamad Hifzhudin Noor ;
Ghadzi, Siti Maisharah binti Sheikh .
AIMS MATHEMATICS, 2024, 9 (11) :30472-30492
[32]   Mathematical modeling and optimal control of carbon dioxide emissions from energy sector [J].
Verma, Maitri ;
Verma, Alok Kumar ;
Misra, A. K. .
ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2021, 23 (09) :13919-13944
[33]   Modeling the role of information and optimal control on an SEIR epidemic model with infectivity in latent period [J].
Guo, Yuhong ;
Liu, Zhijun ;
Wang, Lianwen ;
Tan, Ronghua .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) :1044-1064
[34]   Mathematical modeling and optimal control strategies to limit the spread of fowl pox in poultry [J].
Sofiane, Khassal ;
Oubouskour, Khadija ;
Omar, Balatif .
RESULTS IN CONTROL AND OPTIMIZATION, 2024, 15
[35]   Mathematical modeling of COVID-19 in India and its states with optimal control [J].
Bandekar, Shraddha Ramdas ;
Ghosh, Mini .
MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (02) :2019-2034
[36]   Mathematical modeling on transmission and optimal control strategies of corruption dynamics [J].
Jose, Sayooj Aby ;
Raja, R. ;
Alzabut, J. ;
Rajchakit, G. ;
Cao, Jinde ;
Balas, Valentina E. .
NONLINEAR DYNAMICS, 2022, 109 (04) :3169-3187
[37]   Mathematical modeling and optimal control of the impact of rumors on the banking crisis [J].
Tadmon, Calvin ;
Njike-Tchaptchet, Eric Rostand .
DEMONSTRATIO MATHEMATICA, 2022, 55 (01) :90-118
[38]   Mathematical Modeling and Optimal Control of an HIV/AIDS Transmission Model [J].
Boukary, Ouedraogo ;
Malicki, Zorom ;
Elisee, Gouba .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22
[39]   Mathematical modeling on transmission and optimal control strategies of corruption dynamics [J].
Sayooj Aby Jose ;
R. Raja ;
J. Alzabut ;
G. Rajchakit ;
Jinde Cao ;
Valentina E. Balas .
Nonlinear Dynamics, 2022, 109 :3169-3187
[40]   MODELING PLANT NUTRIENT UPTAKE: MATHEMATICAL ANALYSIS AND OPTIMAL CONTROL [J].
Louison, Loic ;
Omrane, Abdennebi ;
Ozier-Lafontaine, Harry ;
Picart, Delphine .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2015, 4 (02) :193-203