Generating semisimple groups by tori

被引:6
作者
Abels, H. [1 ]
Vinberg, E. B. [2 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[2] Moscow MV Lomonosov State Univ, Dept Mech & Math, Chair Algebra, Moscow 119899, Russia
关键词
Semisimple Lie groups; Compact tori; One-parameter semigroups; Elliptic elements; 1.5-Generatedness;
D O I
10.1016/j.jalgebra.2010.04.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple real Lie group with finite center. We prove that given a non-central element g in G there is an elliptic element h in G such that h and ghg(-1) generate a dense subsemigroup of G. (C) 2010 Published by Elsevier Inc.
引用
收藏
页码:114 / 121
页数:8
相关论文
共 16 条
[1]  
[Anonymous], STUDIA MATH
[2]  
BOIS JM, 2008, MATH Z
[3]   On dense free subgroups of Lie groups [J].
Breuillard, E ;
Gelander, T .
JOURNAL OF ALGEBRA, 2003, 261 (02) :448-467
[4]   On subsemigroups of semisimple Lie groups [J].
ElAssoudi, R ;
Gauthier, JP ;
Kupka, IAK .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (01) :117-133
[5]   Generating sets for compact semisimple Lie groups [J].
Field, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (11) :3361-3365
[6]  
Gorbatsevich V.V., 1994, ENCY MATH SCI, V41
[7]   THE PROBABILITY OF GENERATING A CLASSICAL GROUP [J].
GURALNICK, RM ;
KANTOR, WM ;
SAXL, J .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (04) :1395-1402
[8]  
HOFMANN KH, 1992, SEM SOPH LIE, V2, P123
[9]   GENERATORS OF SEMISIMPLE LIE-ALGEBRAS [J].
IONESCU, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 15 (03) :271-292
[10]  
KURANISHI M, 1949, KODAI MATH SEM REP, V1, P89