Reducing Prefrontal Gamma-Aminobutyric Acid Activity Induces Cognitive, Behavioral, and Dopaminergic Abnormalities That Resemble Schizophrenia

被引:138
作者
Enomoto, Takeshi [1 ,2 ]
Tse, Maric T. [1 ,2 ]
Floresco, Stan B. [1 ,2 ]
机构
[1] Univ British Columbia, Dept Psychol, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Brain Res Ctr, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Dopamine; executive function; GABA hypofunction; latent inhibition; prefrontal cortex; schizophrenia; set-shifting; LATENT INHIBITION MODEL; CARD SORTING TEST; WORKING-MEMORY; ANIMAL-MODEL; GABAERGIC TRANSMISSION; BIPOLAR DISORDER; D-1; RECEPTOR; CORTEX; AMPHETAMINE; NEURONS;
D O I
10.1016/j.biopsych.2010.09.038
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Perturbations in gamma-aminobutyric acid (GABA)-related markers have been reported in the prefrontal cortex of schizophrenic patients. However, a preclinical assessment of how suppression of prefrontal cortex GABA activity may reflect behavioral and cognitive pathologies observed in schizophrenia is forthcoming. Methods: We assessed the effects of pharmacologic blockade of prefrontal cortex GABA, receptors in rats on executive functions and other behaviors related to schizophrenia, as well as neural activity of midbrain dopamine neurons. Results: Blockade of prefrontal cortex GABA(A) receptors with bicuculline (12.5-50 ng) did not affect working memory accuracy but did increase response latencies, resembling speed of processing deficits observed in schizophrenia. Prefrontal cortex GABA(A) blockade did not impede simple discrimination or reversal learning but did impair set-shifting in a manner dependent on when these treatments were given. Reducing GABA activity before the set-shift impaired the ability to acquire a novel strategy, whereas treatment before the initial discrimination increased perseveration during the shift. Latent inhibition was unaffected by bicuculline infusions before the preexposure/conditioning phases, suggesting that reduced prefrontal cortex GABA activity does not impair "learned irrelevance." GABA(A) blockade increased locomotor activity and showed synergic effects with a subthreshold dose of amphetamine. Furthermore, reducing medial prefrontal cortex GABA activity selectively increased phasic burst firing of ventral tegmental area dopamine neurons, without altering the their overall population activity. Conclusions: These results suggest that prefrontal cortex GABA hypofunction may be a key contributing factor to deficits in speed of processing, cognitive flexibility, and enhanced phasic dopamine activity observed in schizophrenia.
引用
收藏
页码:432 / 441
页数:10
相关论文
共 81 条
[1]   GENE-EXPRESSION FOR GLUTAMIC-ACID DECARBOXYLASE IS REDUCED WITHOUT LOSS OF NEURONS IN PREFRONTAL CORTEX OF SCHIZOPHRENICS [J].
AKBARIAN, S ;
KIM, JJ ;
POTKIN, SG ;
HAGMAN, JO ;
TAFAZZOLI, A ;
BUNNEY, WE ;
JONES, EG .
ARCHIVES OF GENERAL PSYCHIATRY, 1995, 52 (04) :258-266
[2]  
Baddeley A. D., 1986, WORKING MEMORY
[3]   Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase [J].
Behrens, M. Margarita ;
Ali, Sameh S. ;
Dao, Diep N. ;
Lucero, Jacinta ;
Shekhtman, Grigoriy ;
Quick, Kevin L. ;
Dugan, Laura L. .
SCIENCE, 2007, 318 (5856) :1645-1647
[4]   Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes [J].
Belforte, Juan E. ;
Zsiros, Veronika ;
Sklar, Elyse R. ;
Jiang, Zhihong ;
Yu, Gu ;
Li, Yuqing ;
Quinlan, Elizabeth M. ;
Nakazawa, Kazu .
NATURE NEUROSCIENCE, 2010, 13 (01) :76-U240
[5]   GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder [J].
Benes, FM ;
Berretta, S .
NEUROPSYCHOPHARMACOLOGY, 2001, 25 (01) :1-27
[6]   Evidence for altered trisynaptic circuitry in schizophrenic hippocampus [J].
Benes, FM .
BIOLOGICAL PSYCHIATRY, 1999, 46 (05) :589-599
[7]  
Birrell JM, 2000, J NEUROSCI, V20, P4320
[8]   Thalamic-prefrontal cortical-ventral striatal circuitry mediates dissociable components of strategy set shifting [J].
Block, Annie E. ;
Dhanji, Hasina ;
Thompson-Tardif, Sarah F. ;
Floresco, Stan B. .
CEREBRAL CORTEX, 2007, 17 (07) :1625-1636
[9]   Neonatal ventral hippocampal lesions disrupt set-shifting ability in adult rats [J].
Brady, Anne Marie .
BEHAVIOURAL BRAIN RESEARCH, 2009, 205 (01) :294-298
[10]   Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method [J].
Breier, A ;
Su, TP ;
Saunders, R ;
Carson, RE ;
Kolachana, BS ;
de Bartolomeis, A ;
Weinberger, DR ;
Weisenfeld, N ;
Malhotra, AK ;
Eckelman, WC ;
Pickar, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (06) :2569-2574