Deep learning and multimodal feature fusion for the aided diagnosis of Alzheimer's disease

被引:13
作者
Jia, Hongfei [1 ]
Lao, Huan [2 ]
机构
[1] Beijing Technol & Business Univ, Sch Artificial Intelligence, Beijing Key Lab Big Data Technol Food Safety, Beijing 100048, Peoples R China
[2] Guangxi Minzu Univ, Sch Artificial Intelligence, Nanning 530004, Guangxi, Peoples R China
关键词
Alzheimer's disease; Functional magnetic resonance imaging; Structure magnetic resonance imaging; 3DMR-PCANet; 3DResNet-10; Kernel canonical correlation analysis; CLASSIFICATION; REGRESSION; DEMENTIA; MRI;
D O I
10.1007/s00521-022-07501-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accurate diagnosis of Alzheimer's disease (AD) in the early stages, such as significant memory concern (SMC) and mild cognitive impairment (MCI), is essential in order to slow its progression through timely treatment. Recent achievements have shown that fusing multimodal neuroimaging data effectively facilitates AD diagnosis. However, most proposed fusion methods simply add or concatenate multimodal features and do not make full use of nonlinear features and texture features across the range of modalities. This paper proposes a diagnostic model that effectively diagnoses AD in different stages by fusing functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) information. First, fMRI and sMRI scans are preprocessed, and mean regional homogeneity (mReHo) transformation is performed for the preprocessed fMRI scans. Then, 3DMR-PCANet extracts features of mReHo images. The basic ResNet module is stacked to build a 3DResNet-10 model for feature extraction of sMRI scans. Next, two image features are fused by kernel canonical correlation analysis. Finally, a support vector machine (SVM) is utilized for the classification of fused features. Experimental results on the Alzheimer's Disease Neuroimaging dataset demonstrate the effectiveness of the proposed method. Specifically, this method improves on the accuracy, specificity, sensitivity, F1 value and area under the curve (AUC) of existing methods in comparisons of the normal control (NC) versus SMC, NC versus MCI, NC versus AD, SMC versus MCI, SMC versus AD, and MCI versus AD groups, which confirms that the proposed method can mine information on the correlation between fMRI and sMRI data of the same subject and can effectively classify AD patients in different stages.
引用
收藏
页码:19585 / 19598
页数:14
相关论文
共 50 条
  • [21] A feature-aware multimodal framework with auto-fusion for Alzheimer's disease diagnosis
    Zhang M.
    Cui Q.
    Lü Y.
    Li W.
    Computers in Biology and Medicine, 2024, 178
  • [22] Deep learning for Alzheimer's disease diagnosis: A survey
    Khojaste-Sarakhsi, M.
    Haghighi, Seyedhamidreza Shahabi
    Ghomi, S. M. T. Fatemi
    Marchiori, Elena
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 130
  • [23] EARLY DIAGNOSIS OF ALZHEIMER'S DISEASE WITH DEEP LEARNING
    Liu, Siqi
    Liu, Sidong
    Cai, Weidong
    Pujol, Sonia
    Kikinis, Ron
    Feng, Dagan
    2014 IEEE 11TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2014, : 1015 - 1018
  • [24] Alzheimer?s disease diagnosis and classification using deep learning techniques
    Al Shehri, Waleed
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [25] Alzheimer’s disease diagnosis and classification using deep learning techniques
    Al Shehri W.
    PeerJ Computer Science, 2022, 8
  • [26] An Effective Multimodal Image Fusion Method Using MRI and PET for Alzheimer's Disease Diagnosis
    Song, Juan
    Zheng, Jian
    Li, Ping
    Lu, Xiaoyuan
    Zhu, Guangming
    Shen, Peiyi
    FRONTIERS IN DIGITAL HEALTH, 2021, 3
  • [27] Multimodal 3D Deep Learning for Early Diagnosis of Alzheimer's Disease
    Kim, Seung Kyu
    Duong, Quan Anh
    Gahm, Jin Kyu
    IEEE ACCESS, 2024, 12 : 46278 - 46289
  • [28] Multimodal image data fusion for Alzheimer's Disease diagnosis by sparse representation
    Ortiz, Andres
    Fajardo, Daniel
    Gorriz, Juan M.
    Ramirez, Javier
    Martinez-Murcia, Francisco J.
    INNOVATION IN MEDICINE AND HEALTHCARE 2014, 2014, 207 : 11 - 18
  • [29] Multi-scale multimodal deep learning framework for Alzheimer's disease diagnosis
    Abdelaziz, Mohammed
    Wang, Tianfu
    Anwaar, Waqas
    Elazab, Ahmed
    Computers in Biology and Medicine, 2025, 184
  • [30] Computer-Aided Diagnosis of Spinal Tuberculosis From CT Images Based on Deep Learning With Multimodal Feature Fusion
    Li, Zhaotong
    Wu, Fengliang
    Hong, Fengze
    Gai, Xiaoyan
    Cao, Wenli
    Zhang, Zeru
    Yang, Timin
    Wang, Jiu
    Gao, Song
    Peng, Chao
    FRONTIERS IN MICROBIOLOGY, 2022, 13