Deep learning and multimodal feature fusion for the aided diagnosis of Alzheimer's disease

被引:13
作者
Jia, Hongfei [1 ]
Lao, Huan [2 ]
机构
[1] Beijing Technol & Business Univ, Sch Artificial Intelligence, Beijing Key Lab Big Data Technol Food Safety, Beijing 100048, Peoples R China
[2] Guangxi Minzu Univ, Sch Artificial Intelligence, Nanning 530004, Guangxi, Peoples R China
关键词
Alzheimer's disease; Functional magnetic resonance imaging; Structure magnetic resonance imaging; 3DMR-PCANet; 3DResNet-10; Kernel canonical correlation analysis; CLASSIFICATION; REGRESSION; DEMENTIA; MRI;
D O I
10.1007/s00521-022-07501-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accurate diagnosis of Alzheimer's disease (AD) in the early stages, such as significant memory concern (SMC) and mild cognitive impairment (MCI), is essential in order to slow its progression through timely treatment. Recent achievements have shown that fusing multimodal neuroimaging data effectively facilitates AD diagnosis. However, most proposed fusion methods simply add or concatenate multimodal features and do not make full use of nonlinear features and texture features across the range of modalities. This paper proposes a diagnostic model that effectively diagnoses AD in different stages by fusing functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) information. First, fMRI and sMRI scans are preprocessed, and mean regional homogeneity (mReHo) transformation is performed for the preprocessed fMRI scans. Then, 3DMR-PCANet extracts features of mReHo images. The basic ResNet module is stacked to build a 3DResNet-10 model for feature extraction of sMRI scans. Next, two image features are fused by kernel canonical correlation analysis. Finally, a support vector machine (SVM) is utilized for the classification of fused features. Experimental results on the Alzheimer's Disease Neuroimaging dataset demonstrate the effectiveness of the proposed method. Specifically, this method improves on the accuracy, specificity, sensitivity, F1 value and area under the curve (AUC) of existing methods in comparisons of the normal control (NC) versus SMC, NC versus MCI, NC versus AD, SMC versus MCI, SMC versus AD, and MCI versus AD groups, which confirms that the proposed method can mine information on the correlation between fMRI and sMRI data of the same subject and can effectively classify AD patients in different stages.
引用
收藏
页码:19585 / 19598
页数:14
相关论文
共 50 条
  • [11] Multimodal attention-based deep learning for Alzheimer's disease diagnosis
    Golovanevsky, Michal
    Eickhoff, Carsten
    Singh, Ritambhara
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2022, 29 (12) : 2014 - 2022
  • [12] Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis
    Suk, Heung-Il
    Lee, Seong-Whan
    Shen, Dinggang
    BRAIN STRUCTURE & FUNCTION, 2016, 221 (05) : 2569 - 2587
  • [13] Deformation based feature selection for Computer Aided Diagnosis of Alzheimer's Disease
    Savio, Alexandre
    Grana, Manuel
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (05) : 1619 - 1628
  • [14] Orthogonal latent space learning with feature weighting and graph learning for multimodal Alzheimer's disease diagnosis
    Chen, Zhi
    Liu, Yongguo
    Zhang, Yun
    Li, Qiaoqin
    MEDICAL IMAGE ANALYSIS, 2023, 84
  • [15] Effective Diagnosis of Alzheimer's Disease via Multimodal Fusion Analysis Framework
    Bi, Xia-an
    Cai, Ruipeng
    Wang, Yang
    Liu, Yingchao
    FRONTIERS IN GENETICS, 2019, 10
  • [16] Deep learning based computer aided diagnosis of Alzheimer's disease: a snapshot of last 5 years, gaps, and future directions
    Bhandarkar, Anish
    Naik, Pratham
    Vakkund, Kavita
    Junjappanavar, Srasthi
    Bakare, Savita
    Pattar, Santosh
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (02)
  • [17] Explainable Deep-Learning-Based Diagnosis of Alzheimer’s Disease Using Multimodal Input Fusion of PET and MRI Images
    Modupe Odusami
    Rytis Maskeliūnas
    Robertas Damaševičius
    Sanjay Misra
    Journal of Medical and Biological Engineering, 2023, 43 : 291 - 302
  • [18] Explainable Deep-Learning-Based Diagnosis of Alzheimer's Disease Using Multimodal Input Fusion of PET and MRI Images
    Odusami, Modupe
    Maskeliunas, Rytis
    Damasevicius, Robertas
    Misra, Sanjay
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2023, 43 (03) : 291 - 302
  • [19] Deep Learning-Based Diagnosis of Alzheimer's Disease
    Saleem, Tausifa Jan
    Zahra, Syed Rameem
    Wu, Fan
    Alwakeel, Ahmed
    Alwakeel, Mohammed
    Jeribi, Fathe
    Hijji, Mohammad
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (05):
  • [20] Multimodal fusion diagnosis of Alzheimer's disease based on FDG-PET generation
    Tu, Yue
    Lin, Shukuan
    Qiao, Jianzhong
    Zhuang, Yilin
    Wang, Zhiqi
    Wang, Dai
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 89