Randomized Quaternion QLP Decomposition for Low-Rank Approximation

被引:8
作者
Ren, Huan [1 ]
Ma, Ru-Ru [2 ]
Liu, Qiaohua [3 ]
Bai, Zheng-Jian [1 ,4 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 360015, Peoples R China
[2] Suzhou Univ Sci & Technol, Sch Math Sci, Suzhou 215009, Peoples R China
[3] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[4] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Quaternion data matrix; Low-rank approximation; Quaternion QLP decomposition; Randomized algorithm; SINGULAR-VALUE DECOMPOSITION; STRUCTURE-PRESERVING METHOD; LU DECOMPOSITION; ALGORITHM; MATRIX; REAL; QR;
D O I
10.1007/s10915-022-01917-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The low-rank approximation of a quaternion matrix has attracted growing attention in many applications including color image processing and signal processing. In this paper, based on quaternion normal distribution random sampling, we propose a randomized quaternion QLP decomposition algorithm for computing a low-rank approximation to a quaternion data matrix. For the theoretical analysis, we first present convergence results of the quaternion QLP decomposition, which provides slightly tighter upper bounds than the existing ones for the real QLP decomposition. Then, for the randomized quaternion QLP decomposition, the matrix approximation error and the singular value approximation error analyses are also established to show the proposed randomized algorithm can track the singular values of the quaternion data matrix with high probability. Finally, we present some numerical examples to illustrate the effectiveness and reliablity of the proposed algorithm.
引用
收藏
页数:27
相关论文
共 48 条
[1]   Quaternionic rank-reduction methods for vector-field seismic data processing [J].
Bahia, Breno ;
Sacchi, Mauricio D. .
DIGITAL SIGNAL PROCESSING, 2019, 87 :178-189
[2]  
Bernstein DS., 2009, Matrix Mathematics: Theory, Facts, and Formulas, V2nd ed., DOI DOI 10.1515/9781400833344
[3]   A QUATERNION QR ALGORITHM [J].
BUNSEGERSTNER, A ;
BYERS, R ;
MEHRMANN, V .
NUMERISCHE MATHEMATIK, 1989, 55 (01) :83-95
[4]   Low-Rank Quaternion Approximation for Color Image Processing [J].
Chen, Yongyong ;
Xiao, Xiaolin ;
Zhou, Yicong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :1426-1439
[5]   Denoising of Hyperspectral Images Using Nonconvex Low Rank Matrix Approximation [J].
Chen, Yongyong ;
Guo, Yanwen ;
Wang, Yongli ;
Wang, Dong ;
Peng, Chong ;
He, Guoping .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (09) :5366-5380
[6]   Randomized Projection for Rank-Revealing Matrix Factorizations and Low-Rank Approximations [J].
Duersch, Jed A. ;
Gu, Ming .
SIAM REVIEW, 2020, 62 (03) :661-682
[7]   RANDOMIZED QR WITH COLUMN PIVOTING [J].
Duersch, Jed A. ;
Gu, Ming .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (04) :C263-C291
[8]   THE APPROXIMATION OF ONE MATRIX BY ANOTHER OF LOWER RANK [J].
Eckart, Carl ;
Young, Gale .
PSYCHOMETRIKA, 1936, 1 (03) :211-218
[9]  
Golub G. H., 1983, Matrix Computations
[10]   SUBSPACE ITERATION RANDOMIZATION AND SINGULAR VALUE PROBLEMS [J].
Gu, M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (03) :A1139-A1173